

MCIMX28x Linux
Reference Manual

Pag. 1 of 74 MCIMX28x Linux Reference Manual Rev.1.0

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in
a retrieval system, or transmitted, in any form or by any means whether, electronic,
Mechanical, or otherwise without the prior written permission of Mas elettronica.
No warranty of accuracy is given concerning the contents of the information contained in
this publication. To the extent permitted by law no liability (including liability to any
person by reason of negligence) will be accepted by Mas elettronica, its subsidiaries or employees
for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.
Mas elettronica reserves the right to change details in this publication without notice. Product and
company names herein may be the trademarks of their respective owners.

Mas Elettronica Sas
Via Risorgimento 16/C
35030 Selvazzano Dentro (PD)
Italy.

Contents
Pag. 2 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Sommario
Chapter 1 Introduction .. 9

Chapter 2 Architecture .. 13

Chapter 3 Machine Specific Layer (MSL) ... 33

Chapter 4 Direct Memory Access Controller (DMAC) API ... 39

Chapter 5 Persistent Bits Driver ... 41

Chapter 6 Unique ID on Boot Media ... 43

Chapter 7 CPU Frequency Scaling (CPUFREQ) Driver .. 46

Chapter 8 i.MX28 Static Power Management Driver .. 48

Chapter 9 NAND GPMI Flash Driver ... 50

Chapter 10 I 2 C Driver ... 53

Chapter 11 MMC/SD/SDIO Host Driver .. 57

Chapter 12 Universal Asynchronous Receiver-Transmitter (UART) Driver 58

Chapter 13 USB Driver ... 60

Chapter 14 Real Time Clock (RTC) Driver ... 69

Chapter 15 Watchdog (WDOG) Driver ... 70

Chapter 16 External Devices ... 71

Chapter 17 Board Programming ... 73

Rohs compliance .. 75

Warranty Terms .. 75

Contact Informations .. 76

Pag. 3 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Revision History

Rev. Document Code Released Written Verified Approved

1.0 15/07/2014 N.Convertino S.Mascetti S.Mascetti

Pag. 4 of 74 MCIMX28x Linux Reference Manual Rev.1.0

About This Book

The Linux Board Support Package (BSP) represents a porting of the Linux Operating System (OS)
to the i.MX processors and its associated reference boards. The BSP supports many hardware
features on the platforms and most of the Linux OS features that are not dependent on any specific
hardware feature.

Audience
This document is targeted to individuals who will port the i.MX Linux BSP to customer-specific
products. The audience is expected to have a working knowledge of the Linux 2.6 kernel internals,
driver models, and i.MX processors.

Conventions
This document uses the following notational conventions:

•Courier monospaced type indicate commands, command parameters, code examples, and file
and directory names.

•Italic type indicates replaceable command or function parameters.
•Bold type indicates function names.

Definitions, Acronyms, and Abbreviations
The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

ADC Asynchronous Display Controller

address
translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX—provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm—used to encode and decode (or compress and
decompress) various types of data

CPU Central Processing Unit—generic term used to describe a processing core

Term Definition

Pag. 5 of 74 MCIMX28x Linux Reference Manual Rev.1.0

CRC Cyclic Redundancy Check—Bit error protection method for data communication

CSI Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is stored in
a lower address than the most significant byte. In big endian, the order of the bytes is reversed

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at regular
intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling Federal
government requirements such as for security and interoperability but no acceptable industry standards

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes cleaning the
line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software command

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message digest, is a
number generated from a string of text. The hash is substantially smaller than the text itself, and is generated by a
formula in such a way that it is extremely unlikely that some other text produces the same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit —supports video and graphics processing functions and provides an interface to video/still
image sensors and displays

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication

ISR Interrupt Service Routine

Term Definition

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant devices on a
printed circuit board

Kill Abort a memory access

KPP KeyPad Port—16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)

line Refers to a unit of information in the cache that is associated with a tag

Pag. 6 of 74 MCIMX28x Linux Reference Manual Rev.1.0

LRU Least Recently Used—a policy for line replacement in the cache

MMU Memory Management Unit—a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video

MPEG
standards

Several standards of compression for moving pictures and video:
•MPEG-1 is optimized for CD-ROM and is the basis for MP3
•MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD • MPEG-
3 was merged into MPEG-2
•MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to configure
radio subsystems and selected peripherals

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR) used in
memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high capacity data
storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write, and read
capabilities over NOR architecture

NOR Flash See NAND Flash

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has developed a
standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that have the
same rectangular size (85.6 by 54 millimeters), but different widths

physical
address

The address by which the memory in the system is physically accessed

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to create
other colors. The abbreviation RGB comes from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is unique
to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the lighter the picture
gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random numbers
as part of the security module

ROM Read Only Memory

Term Definition

ROM
bootstrap

Internal boot code encompassing the main boot flow as well as exception vectors

RTIC Real-Time Integrity Checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data lines

Pag. 7 of 74 MCIMX28x Linux Reference Manual Rev.1.0

and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—asynchronous serial communication to external devices

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1 specification
supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480 Mbps. A single USB
port can be used to connect up to 127 peripheral devices, such as mice, modems, and keyboards. USB also supports
Plug-and-Play installation and hot plugging

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves depending
on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

Suggested Reading
The following documents contain information that supplements this guide

Pag. 8 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 1 Introduction
The i.MX family Linux Board Support Package (BSP) supports the Linux Operating System (OS)
on the following processor:

• i.MX28 Applications Processor

The purpose of this software package is to support Linux on the i.MX family of Integrated Circuits
(ICs) and their associated platforms (EVK). It provides the necessary software to interface the
standard open-source Linux kernel to the i.MX hardware. The goal is to enable Freescale customers
to rapidly build products based on i.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the
product- specific drivers, hardware-independent software stacks, Graphical User Interface (GUI)
components, Java Virtual Machine (JVM), and applications required for a product. Some of these
are made available in their original open-source form as part of the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP
functionality and the tests run on the BSP do not have sufficient coverage to replace traditional
silicon verification test suites.

1.1 Software Base

The i.MX BSP is based on version 2.6.35.3 of the Linux kernel from the official Linux kernel web
site (http://www.kernel.org). It is enhanced with the features provided by Freescale.

1.2 Features

Table 1-1 describes the features supported by the Linux BSP for
specific platforms.

Feature Description Chapter Source Applicable
Platform

Machine
Specific Layer

MSL Machine Specific Layer (MSL) supports interrupts, Timer, Memory
Map, GPIO/IOMUX, SPBA, SDMA.
•Interrupts (AITC/AVIC): The Linux kernel contains common ARM

code for handling interrupts. The MSL contains platform-specific
implementations of functions for interfacing the Linux kernel to the

Chapter 3, “Machine
Specific
Layer (MSL)”

All

Pag. 9 of 74 MCIMX28x Linux Reference Manual Rev.1.0

http://www.kernel.org/
http://www.kernel.org/

interrupt controller.
•Timer (GPT): The General Purpose Timer (GPT) is set up to

generate an interrupt as programmed to provide OS ticks. Linux
facilitates timer use through various functions for timing delays,
measurement, events, alarms, high resolution timer features, and so
on. Linux defines the MSL timer API required for the OS-tick timer
and does not expose it beyond the kernel tick implementation.

•GPIO/EDIO/IOMUX: The GPIO and EDIO components in the MSL
provide an abstraction layer between the various drivers and the
configuration and utilization of the system, including GPIO,
IOMUX, and external board I/O. The IO software module is board-
specific, and resides in the MSL layer as a self-contained set of
files. I/O configuration changes are centralized in the GPIO module
so that changes are not required in the various drivers.

•SPBA: The Shared Peripheral Bus Arbiter (SPBA) provides an
arbitration mechanism among multiple masters to allow access to
the shared peripherals. The SPBA implementation under MSL
defines the API to allow different masters to take or release
ownership of a shared peripheral.

DMAC Both AHB-to-APBH and AHB-to-APBX DMA support configurable
DMA descript chain.

Chapter 4, “Direct
Memory Access
Controller (DMAC) API”

i.MX28

Power Management Drivers

Low-level PM
Drivers

The low-level power management driver is responsible for
implementing hardware-specific operations to meet power
requirements and also to conserve power on the development
platforms. Driver implementations are often different for different
platforms. It is used by the DPM layer.

Chapter 8, “i.MX28 Static
Power
Management Driver”

i.MX28

CPU
Frequency

Scaling

The CPU frequency scaling device driver allows the clock speed of
the CPUs to be changed on the fly.

Chapter 7, “CPU Frequency
Scaling (CPUFREQ) Driver”

i.MX28

Memory Drivers

NAND MTD The NAND MTD driver interfaces with the integrated NAND
controller. It can support various file systems, such as UBIFS,
CRAMFS and JFFS2. The driver implementation supports the
lowest level operations on the external NAND Flash chip, such

Chapter 14, “NAND Flash
Driver

Pag. 10 of 74 MCIMX28x Linux Reference Manual Rev.1.0

as block read, block write and block erase as the NAND Flash
technology only supports block access. Because blocks in a
NAND Flash are not guaranteed to be good, the NAND MTD
driver is also able to detect bad blocks and feed that information
to the upper layer to handle bad block management.

Bus Drivers

I2C The I2C bus driver is a low-level interface that is used to interface with the
I2C bus. This driver is invoked by the I2C chip driver; it is not exposed to
the user space. The standard Linux kernel contains a core I2C module that
is used by the chip driver to access the bus driver to transfer data over the
I2C bus. This bus driver supports:
•Compatibility with the I2C bus standard
•Bit rates up to 400 Kbps
•Standard I2C master mode
•Power management features by suspending and resuming I2C.

Chapter 19, “Inter-IC
(I2C) Driver”

i.MX28

CSPI The low-level Configurable Serial Peripheral Interface (CSPI) driver
interfaces a custom, kernel-space API to both CSPI modules. It supports
the following features:
•Interrupt-driven transmit/receive of SPI frames
•Multi-client management
•Priority management between clients
•SPI device configuration per client

Chapter 21, “SPI Bus
Driver”

i.MX28

MMC/SD/S
DIO -
SDHC

The MMC/SD/SDIO Host driver is implemented using the i.MX28 SSP
component, which supports SD/MMC mode.

Chapter 22,
“MMC/SD/SDIO Host
Driver”

i.MX28

UART Drivers

Debug and
Application

UARTs

These are three serial UARTs. One that has no DMA support and is
intended to work as a debug console (debug UART), and two are high-
performance UARTs,
which are intended to be used by applications (application UART,
appUART).

Chapter 23, “Universal
Asynchronous
Receiver-Transmitter
(UART)
Driver”

i.MX28

General Drivers

USB The USB driver implements a standard Linux driver interface to the ARC
USB-OTG controller.

Chapter 24, “ARC USB
Driver”

i.MX28

RTC This is the integrated Real Time Clock (RTC) module. The RTC is used to
keep the time and date while the system is turned off. Additionally, it
provides the PIE (periodic interrupt at a specific frequency) and AIE (wake
up the system by providing an alarm) features.

Chapter 25, “Real Time
Clock
(RTC) Driver”

i.MX28

WatchDog The Watchdog Timer module protects against system failures by providing
an escape from unexpected hang or infinite loop situations or
programming errors. This WDOG implements the following features:

•Generates a reset signal if it is enabled but not serviced within a
predefined time-out value

•Does not generate a reset signal if it is serviced within a predefined time-
out value

Chapter 26, “Watchdog
(WDOG)
Driver”

i.MX28

Pag. 11 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Bootloaders

uBoot uBoot is an open source boot loader. See uBoot User guide i.MX28

Pag. 12 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 2 Architecture
This chapter describes the overall architecture of the Linux port to the i.MX processor. The BSP
supports all platforms in a single development environment, but not every driver is supported by all
processors. Drivers that are common to all platforms are referred as i.MX drivers and drivers unique
to a specific platform are referred by the platform name.

2.1 Linux BSP Block Diagram

Figure 2-1 shows the architecture of the BSP for the i.MX family of processors. It consists of user
space executables, standard kernel components that come from the Linux community, and
hardware-specific drivers and functions provided by Freescale for the i.MX processors.

Applications, Shell Utilities, Libraries GUI (QT and GTK) MM Framework &
Codecs

VTE Test Framework &
Unit Tests

Figure 2-1. BSP Block Diagram

2.2 Kernel

The i.MX Linux port is based on the standard Linux kernel. The kernel supports most of the
features available in many modern embedded OSs such as:

•Process and thread management
•Memory management (memory mapping, allocation/deallocation, MMU, and L1/L2

cache control)
•Resource management (interrupts)
•Power management

Pag. 13 of 74 MCIMX28x Linux Reference Manual Rev.1.0

•File systems (VFS, cramfs, ext2, ramfs, NFS, devfs, JFFS2, FAT, UBIFS)
•Linux Device Driver model
•Standardized APIs
•Networking stacks

ARM Linux Kernel customization to support each platform includes a custom kernel
configuration and MSL implementation.

2.2.1 Kernel Configuration

For this BSP release, kernel configuration is performed through the Linux Target Image
Builder (LTIB). See the LTIB documentation for details. The configuration settings available
on some platforms that are different from the standard features are as follows:

•Embedded mode
•Module loading/unloading
•ARM9
•Supported file formats: ELF binaries, a.out, and ECOFF
•Block devices: Loopback, Ramdisk
•i.MX internal UART
•File systems: ext2, dev, proc, sysfs, cramfs, ramfs, JFFS2, FAT, pramfs
•Frame buffer
•Kernel debugging
•Automatic kernel module loading
•Power management
•Memory Technology Device (MTD) support
•USB Host/device multiplexing
•Unsorted Block Images (UBI) support
•Flash Translation Layer (FTL)
•CPU frequency scaling

2.2.2 Machine Specific Layer (MSL)

The MSL provides a machine-dependent implementation as required by the Linux kernel,
such as memory map, interrupt, and timer. Each ARM platform has its own MSL directory
under the arch/arm directory as listed in Table 2-1.

Table 2-1. MSL Directories

Platform Directory

i.MX28 <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx28

See Chapter 4, “Machine Specific Layer (MSL),” for more information.

Pag. 14 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.2.2.1 Memory Map

Before the kernel starts running in the virtual space, the physical-to-virtual address mapping
for the I/O peripherals needs to be provided for the MMU to do the translation for
memory/register accesses. The mapping is performed through a table structure in the MSL,
specific to a particular platform, with each entry specifying a peripheral starting address of
virtual addresses, starting address of physical addresses, and the size of the memory region
and the type of the region.

2.2.2.2 Interrupts

The standard Linux kernel contains common ARM code for handling interrupts. The MSL
contains platform-specific implementations of functions for interfacing the Linux kernel to
the ARM9 Interrupt Controller (AITC).

Together, they support the following capabilities:
•AVIC initialization
•ARM Interrupt Controller (AITC) initialization
•Interrupt enable/disable control
•ISR binding
•ISR dispatch
•Interrupt chaining
•Standard Linux API for accessing interrupt functions

2.2.2.3 General Purpose Timer (GPT)

The GPT is configured to generate an interrupt every 10 ms to provide OS ticks. This timer
is also used by the kernel for additional timer events. Linux defines the MSL timer API
required for the OS-tick timer and does not expose it beyond the kernel tick implementation.
Linux facilitates timer use through various functions for timing delays, measurement,
events, and alarms. The GPT is also used as the source to support the high resolution timer
feature. The timer tick interrupt is disabled in low-power modes other than idle.

2.2.2.4DMA API

The i.MX28 device is equipped with two AHB-to-APBH/AHB-to-APBX bridges with built-
in DMA capability that allow programmed data transfers between SDRAM and peripheral
devices. The DMA is abstracted as a number of channels dedicated to on-chip peripheral
devices such as UART, DAC/ADC, GPMI and so on. Each DMA channel is programmed by
a set of per-channel registers and special DMA command structure located in memory. A
command describes a single DMA transaction and may be chained with other commands.
The MSL implements an internal DMA API that allows other drivers to initialize DMA
channels and control DMA transfers. The following features are implemented:

•Command structures allocation/de-allocation
•Channel initialization
•Channel execution control: start/stop/freeze a channel

Pag. 15 of 74 MCIMX28x Linux Reference Manual Rev.1.0

•Channel interrupts control

2.2.2.5 Input/Output (I/O)

The Input/Output (I/O) component in the MSL provides an abstraction layer between the
various drivers and the configuration and utilization of the system, including GPIO,
IOMUX, pin multiplexing, and external board I/O. The I/O software module is board-
specific and resides in the MSL layer as a self-contained set of files. It provides the
following features as part of a custom kernel-space API:

•Initialization for the default I/O configuration after boot
•Functions for configuring the various I/O for active use

•Functions for configuring the various I/O for low power mode
•Functions for controlling and sampling GPIO and board I/O
•Functions for enabling, disabling, and binding callback functions to GPIO and EDIO

interrupts
•Functions to support different priority levels during ISR registration for different

modules; if more than one interrupt occurs at the same time, the higher priority ISR
callback gets called first

•Atomic helper functions for GPIO, EDIO, and IOMUX configuration

These functions are organized by functional usage, and not by pin or port. This allows I/O
configuration changes to be centralized in the GPIO module without requiring changes in
the various drivers. These functions are used by other device drivers in the kernel space.
User level programs do not have access to the functions in the GPIO module.

The exact API and implementations are different on each platform to account for the
differences in hardware, drivers, and boards. This module is an evolving module. As more
drivers are added, more functions are required from this module. The additions to the
module are included in every new release of the BSP.

2.2.2.6 Pin Multiplexing

The pin multiplexing component is responsible for setting I/O pin configuration and routing.
Each I/O pin is shared between up to three different i.MX28 modules or can be configured
as a GPIO pin and controlled by software. The MSL implements a kernel-space API used by
the MSL board specific components to set pins configurations corresponding to a particular
board. The following features are implemented: • Pin resource manager to avoid conflicts on
pin use

•Pin voltage control
•Pin strength control
•Pin pull-up resistor control
•Pin group configuration

Pag. 16 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.2.2.7 Shared Peripheral Bus Arbiter (SPBA)

The SPBA provides an arbitration mechanism to allow multiple masters to have access to
the shared peripherals. The SPBA implementation under MSL defines the API to allow
different masters to take or release ownership of a shared peripheral. These functions are
also exported so that they can be used by other loadable modules.

2.3 Drivers

Many drivers are provided by Freescale that are specific to the peripherals on the i.MX
family of processors or to the development platforms. Many of these drivers are common
across all of the platforms. Most can be compiled into the kernel or compiled as object
modules which can be dynamically loaded from a file system through insmod or modprobe.
Modules can be loaded automatically as required using the kernel auto-load feature. The
BSP contains a modules.dep file and a modprobe.conf file that contain the dependency
information for the modules.

The i.MX multimedia applications processors have several classes of drivers, explained in
the following sections.

2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver

The i.MX family of processors support a Universal Asynchronous Receiver/Transmitter
(UART) driver.

2.3.1.1 Debug Asynchronous Receiver/Transmitter (UART)

The Debug UART driver provides an interface to the i.MX28 Debug UART controller. It
provides the standard Linux serial driver API. The following features are supported:

•Interrupt driven transmit/receive of characters
•Standard Linux baud rates up to 115 Kbps
•Receive and transmit FIFOs support
•Transmitting and receiving characters with 5, 6, 7 or 8-bit character lengths
•Odd and even parity
•CTS/RTS hardware flow control
•Send and receive break characters through the standard Linux serial API
•Recognize break and parity errors
•Supports the standard TTY layer IOCTL calls
•Console support required to bring up the command prompt through Debug serial port
•Power management features by suspending and resuming UART ports

Pag. 17 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Currently, the Debug UART driver is used by default to bring up the console. DMA is not
supported by this driver. The Debug UART can be accessed through the /dev/ttyAM0 device
file.

2.3.1.2 Application Asynchronous Receiver/Transmitter (UART)

The Application UART driver provides an interface to the i.MX28 Debug UART controller.
It provides the standard Linux serial driver API. The following features are supported:

•Interrupt and DMA driven transmit/receive of characters
•Standard Linux baud rates up to 3 Mb/s
•Transmitting and receiving characters with 5, 6, 7 or 8-bit character lengths
•Odd and even parity
•CTS/RTS hardware flow control
•Send and receive break characters through the standard Linux serial API
•Recognize break and parity errors
•Supports the standard TTY layer IOCTL calls
•Includes console support required to bring up the command prompt through the Debug

serial port
•Supports power management features by suspending and resuming UART ports

The application UART can be accessed through the /dev/ttySP0 device file.

2.3.2 Real-Time Clock (RTC) Driver

The RTC is the clock that keeps the date and time while the system is running and even
when the system is inactive. The RTC implementation supports IOCTL calls to read time,
set time, set up periodic interrupts, and set up alarms. Linux defines the RTC API.

2.3.3 Watchdog Timer (WDOG) Driver

The Watchdog timer protects against system failures by providing a method of escaping
from unexpected events or programming errors.

The WDOG software implementation provides routines to service the WDOG timer, so that
the timeout does not occur. The WDOG is serviced (at the same time for the platforms with
two WDOGs) if it is already enabled before the Linux kernel boots (enabled by boot loader
or ROM) with a configurable service interval. In addition, compile-time options specify
whether the Linux kernel should enable the watchdog, and if so, which parameters should be
used. If the second WDOG is present (used to generate an interrupt after the timeout
occurs), the highest interrupt priority (number 16) is assigned to the WDOG interrupt.

Pag. 18 of 74 MCIMX28x Linux Reference Manual Rev.1.0

The Linux OS has a standard WDOG interface that allows a WDOG driver for a specific
platform to be supported. This is supported under all i.MX platforms.

2.3.4 DCP

The DCP driver performs AES EBC decryption and encryption using the hardware OTP key
that is not accessible from user space. The driver configures the i.MX28 DCP engine to AES
128-bit EBC mode and only supports encrypting/decrypting of a single 128-bit block.

The main purpose of this driver is to implement an interface to the DCP cryptography
engine which is necessary for boot stream image verification performed before writing the
boot stream to NAND flash. The driver implements a simple IOCTL interface to decrypt and
encrypt a single 128-bit block.

2.3.5 i.MX28 Graphics

The graphics component consists of a number of Linux kernel drivers that implement the
standard Linux kernel interface to the i.MX28 hardware to manipulate video buffers and
output them to an LCD panel or TV screen. The graphic support includes the following
components:

•Frame buffer driver
•LCDIF driver
•Pixel Pipeline (PxP) driver
•LCD panel driver

Figure 2-2 shows a block diagram of the i.MX28 Linux kernel graphic components and their
relationship to each other.

Pag. 19 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Figure 2-2. i.MX28 Kernel Graphic Components

2.3.5.1 LCDIF Driver

The i.MX28 LCDIF driver implements the Linux kernel-space API for basic LCD interface
operations such as initialization, as well as LCD interface DMA abstraction for the callers.
The interface is used by other graphics components such as the LCD panel drivers or the
Frame buffer driver.

2.3.5.2 LCD Panel Drivers

LCD panel drivers provide an abstraction of a video output device for the Frame buffer
driver. The LCD panel driver implements specific LCDIF initialization and exposes a set of
API calls to the frame buffer driver so that it can control video output devices and perform
dynamic switching between them (for example, run-time switching between the LCD panel
and TV-output).

2.3.5.3 Frame Buffer Driver

The Frame buffer driver implements a standard Linux fbdev interface for user space
applications and controls dynamic switching between different video outputs per user
request.

Pag. 20 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.3.5.4 Pixel Pipeline (PXP) Driver

The PxP driver implements a Video for Linux (V4L2) interface to the i.MX28 PxP hardware
capable of performing various manipulations with video buffers such as scaling, cropping,
rotation, alpha blending and so on. The PxP module handles a video stream received from
user space from the V4L interface, then combines it with the frame buffer image and outputs
the final image to the LCDIF module.

The graphics components can operate in two modes, with PxP enabled or disabled. Figure 2-2
shows the different video data flows depending on different modes.

2.3.6 Sound Driver

The components of the audio subsystem are applications, the Advanced Linux Sound
Architecture (ALSA), the audio driver, and the hardware. Applications interface with the
ALSA, and the ALSA interfaces with the audio driver, which in turn controls the hardware
of the audio subsystem. For more information about ALSA, see www.alsa-project.org .

The sound driver runs on the ARM processor. Digital audio data is carried over the digital
audio link interface to the codec hardware. This is managed by the audio driver. There may
be one or more audio streams, depending on the codec, such as voice or stereo DAC. The
audio driver configures sample rates, formats, and audio clocks. The audio driver also
manages the setup and control of the codec, DMA, and audio accessories, such as
headphones and microphone detection. Stream mixing may also be supported, depending on
the codec.

2.3.7 Keypad

The keypad driver interfaces Linux to the keypad ladder connected to the i.MX28 LRADC
controller. The software operation of the driver follows the Linux keyboard architecture.The
driver is driven by interrupts generated by the LRADC controller when changing a signal on
the keypad ladder input pin. The driver reads a current voltage on the LRADC pin, detects
which key is being pressed and sends a key code to the upper layer. The driver detects long
key presses and reports them as multiple key press events.The keypad driver may be used as
a wake-up source for low-power standby mode.

2.3.8 Memory Technology Device (MTD) Driver

MTDs in Linux cover all memory devices, such as RAM, ROM, and different kinds of
Flashes. As each memory device has its own idiosyncrasies in terms of read and write, the
MTD subsystem provides a unified and uniform access to the various memory devices.

Pag. 21 of 74 MCIMX28x Linux Reference Manual Rev.1.0

http://www.opensound.com/
http://www.opensound.com/

Figure 2-3 shows the MTD architecture.

Figure 2-3. MTD Architecture

Note: UBI and UBIFS User Modules
are supported in i.MX28

Figure 2-3 is excerpted from Building Embedded Linux Systems, which describes the MTD
subsystem. The user modules should not be confused with kernel modules or any sort of user-land
software abstraction. The term MTD user module refers to software modules within the kernel that
enable access to the low-level MTD chip drivers by providing recognizable interfaces and
abstractions to the higher levels of the kernel or, in some cases, to user space.

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and
properties in the mtd_info argument to the add_mtd_device() function. The callbacks an MTD
driver has to provide are called by the MTD subsystem to carry out operations, such as erase, read,
write, and sync.

Pag. 22 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.3.8.1 GPMI/NAND

The GPMI/NAND driver interfaces with the i.MX28 GPMI/NAND module that is able to
interact with a variety of NAND flash chips with 2 Kbyte and 4 Kbyte page sizes. The
driver implements a standard interface for the upper MTD subsystem layer and supports
various file systems, such as JFFS2, UBIFS or different commodity file systems (for
example, FAT or EXT2) created on top of the UBI FTL.

The GPMI/NAND driver supports the i.MX28 BCH HW Error Correcting Code (ECC)
engine that speeds up NAND flash read and write operations

2.3.9 USB Driver

The Linux kernel supports two main types of USB drivers: drivers on a host system and
drivers on a device. A common USB host is a desktop computer. The USB drivers for a host
system control the USB devices that are plugged into it. The USB drivers in a device,
control how that single device looks to the host computer as a USB device. Because the term
“USB device drivers” is very confusing, the USB developers have created the term “USB
gadget drivers” to describe the drivers that control a USB device that connects to a
computer.

2.3.9.1USB Host-Side API Model

Within the Linux kernel, host-side drivers for USB devices talk to the usbcore APIs. The
two types of public usbcore APIs, targeted at two different layers of USB driver:

•General purpose drivers, exposed through driver frameworks such as block, character,
or network devices.

•Drivers that are part of the core, which are involved in managing a USB bus.

Such core drivers include the hub driver, which manages trees of USB devices, and several
different kinds of Host Controller Drivers (HCDs), which control individual buses. See
Chapter 2 of http://www.kernel.org/doc/htmldocs/usb.html, for more information.

The device model seen by USB drivers is relatively complex:
•USB supports four kinds of data transfer (control, bulk, interrupt, and isochronous).

Two transfer types use bandwidth as it is available (control and bulk), while the other
two types of transfer (interrupt and isochronous) are scheduled to provide guaranteed
bandwidth.

•The device description model includes one or more configurations per device, only one
of which is active at a time. Devices that are capable of high speed operation must
also support full speed configurations, along with a way to ask about the other speed
configurations that might be used.

Pag. 23 of 74 MCIMX28x Linux Reference Manual Rev.1.0

http://www.kernel.org/doc/htmldocs/usb.html

•Configurations have one or more interfaces. Interfaces may be standardized by USB
Class specifications, or may be specific to a vendor or device.

•Interfaces have one or more endpoints, each of which supports one type and direction of
data transfer such as bulk out or interrupt in.

•The only host-side drivers that actually touch hardware (reading/writing registers,
handling IRQs, and so on) are the HCDs.

2.3.9.2USB Device-Side Gadget Framework

The Linux Gadget API can be used by peripherals, which act in the USB device (slave) role.

Components of the Gadget Framework (see http://www.linux-usb.org/gadget/) are as
follows :

•Peripheral Controller Drivers—implement the Gadget API, and are the only layers that
talk directly to the hardware. Different controller hardware needs different drivers,
which may also need board-specific customization. These provide a software gadget
device, visible in sysfs. This device can be thought of as being the virtual hardware to
which the higher-level drivers are written.

•Gadget Drivers—use the Gadget API, and can often be written to be hardware-neutral.
A gadget driver implements one or more functions, each providing a different
capability to the USB host, such as a network link or speakers.

•Upper Layers, such as the network, file system, or block I/O subsystems—generate and
consume the data that the gadget driver transfers to the host through the controller
driver.

2.3.9.3USB OTG Framework

Systems need specialized hardware support to implement OTG, including a special Mini-
AB jack and associated transceiver to support Dual-Role operation. They can act either as a
host, using the standard Linux-USB host side driver stack, or as a peripheral, using the
Gadget framework. To do that, the system software relies on small additions to those
programming interfaces, and on a new internal component (here called an OTG Controller)
affecting which driver stack connects to the OTG port. In each role, the system can re-use
the existing pool of hardware-neutral drivers, layered on top of the controller driver
interfaces (usb_bus or usb_gadget). Such drivers need at most minor changes, and most of
the calls added to support OTG can also benefit non-OTG products.

•Gadget drivers test the is_otg flag, and use it to determine whether or not to include an
OTG descriptor in each of their configurations.

•Gadget drivers may need changes to support the two new OTG protocols, exposed in
new gadget attributes such as b_hnp_enable flag. HNP support should be reported
through a user interface

Pag. 24 of 74 MCIMX28x Linux Reference Manual Rev.1.0

(two LEDs could suffice), and is triggered in some cases when the host suspends the
peripheral. SRP support can be user-initiated just like remote wakeup, probably by
pressing the same button.
•On the host side, USB device drivers need to be taught to trigger HNP at appropriate

moments, using usb_suspend_device(). That also conserves battery power, which is
useful even for non-OTG configurations.

•Also on the host side, a driver must support the OTG Targeted Peripheral List, a
whitelist used to reject peripherals not supported with a given Linux OTG host. This
whitelist is product-specific—each product must modify otg_whitelist.h to match its
interoperability specification.

Non-OTG Linux hosts, such as PCs and workstations, normally have some solution for
adding drivers, so that peripherals that are not recognized can eventually be supported. That
approach is unreasonable for consumer products that may never have their firmware
upgraded, and where it is usually unrealistic to expect traditional PC/workstation/server
kinds of support model to work. For example, it is often impractical to change device
firmware after the product has been distributed, so driver bugs cannot normally be fixed if
they are found after shipment.
Additional changes are required below those hardware-neutral usb_bus and usb_gadget
driver interfaces but those are not discussed here. Those affect the hardware-specific code
for each USB Host or Peripheral controller, and how the HCD initializes (since OTG can be
active only on a single port). They also involve what may be called an OTG Controller
Driver, managing the OTG transceiver and the OTG state machine logic as well as much of
the root hub behavior for the OTG port. The OTG controller driver needs to activate and
deactivate USB controllers depending on the relevant device role. Some related changes
were required inside usbcore, so that it can identify OTG-capable devices and respond
appropriately to HNP or SRP protocols.

2.3.10General Drivers

General drivers discussed in the following sections, include the following:
•Multimedia Card (MMC)/Secure Digital (SD) driver
•I2C Client and Bus drivers
•Dynamic Power Management (DPM) driver

2.3.10.1 MMC/SD Host Driver

The MMC/SD card driver implements a standard Linux MMC host driver SSP interface
configured to work in MMC/SD mode. The driver is an underlying layer for the Linux
MMC block driver that follows standard Linux driver API. The driver has the following
features:

•MMC/SD cards

•Standard MMC/SD commands
•1- bit or 4-bit operation

Pag. 25 of 74 MCIMX28x Linux Reference Manual Rev.1.0

•Card insertion and removal events
•Write protection signal

2.3.10.2 Inter-IC (I2C) Bus Driver

The I2C bus driver is a low-level interface that is used to interface with the I2C bus. This
driver is invoked by the I2C chip driver. It is not exposed to the user space. The standard
Linux kernel contains a core I2C module that is used by the chip driver to access the bus
driver to transfer data over the I2C bus. The chip driver uses a standard kernel space API that
is provided in the Linux kernel to access the core I2C module. The standard I2C kernel
functions are documented in the files available under Documentation/i2c in the kernel
source tree. This bus driver supports the following features:

•Compatibility with the I2C bus standard
•Bit rates up to 400 Kbps
•Start and stop signal generation/detection
•Acknowledge bit generation/detection
•Interrupt-driven, byte-by-byte data transfer
•Standard I2C master mode

•Power management features by suspending and resuming I2C

The I2C slave mode is not supported by this driver.

2.3.10.4 Dynamic Power Management (DPM) Driver

DPM refers to power management schemes implemented while programs are running. DPM
focuses on system wide energy consumption while it is running. In any CPU-intensive
application, lowering bus frequencies from their maximum performance points can result in
system wide energy savings. DPM implementation includes the following data structures:

•Operating points
•Operating states
•Policies
•Policy manager

2.3.10.4.1 Policy Architecture

A DPM policy is a named data structure installed in the DPM implementation within the
operating system, and managed by the policy manager, which may be outside of the
operating system. After a DPM system is initialized and activated, the system is always
Pag. 26 of 74 MCIMX28x Linux Reference Manual Rev.1.0

executing a particular DPM policy.

2.3.10.4.2 Operating Points

At any given point in time, a system is said to be executing at a particular operating point.
The operating point is described using hardware parameters, such as core voltage, CPU and
bus frequencies, and the states of peripheral devices. A DPM system could properly be
defined as the set of rules and procedures that move the system from one operating point to
another as events occur.

2.3.10.4.3 Operating States

As already mentioned, the system supports multiple operating points. Some rules and
mechanisms are required to move the system from one operating point to another. Each
operating state is associated with an operating point. The system at a particular operating
point is said to be in an operating state.

2.3.10.4.4 Policy Managers

A policy maps each operating state to a congruent class of operating points. The system
supports multiple operating states and hence multiple operating points. At any point in time,
the system operates using a single policy. For example, a power management strategy
contains at least one policy, and may specify as many different policies as necessary for
different situations. If multiple policies are required, then a policy manager must exist in the
system to coordinate the activation of different policies.

Figure 2-4 shows the high level design for DPM.

Pag. 27 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.3.10.5 Low-Level Power Management Driver

The low-level power management driver is responsible for implementing hardware-specific
operations to meet power requirements and also to conserve power. Driver implementation
may be different for different platforms. It is used by the DPM layer. This driver implements
Dynamic Voltage and Frequency Scaling (DVFS) or Dynamic Frequency Scaling (DFS)
techniques, depending on the platform, and low-power modes. The DVFS or DFS driver is
used to change the frequency/voltage or frequency only when the DPM layer decides to
change the operating point to meet the power

requirements. This is performed when the system is in RUN mode which helps in
conserving power while the system is running. Low-power modes, such as WAIT and STOP
are also implemented to save power. In all these cases, power consumption is managed by
reducing the voltage/frequency and the severity of clock gating.

2.3.10.6 Dynamic Voltage and Frequency Scaling (DVFS) Driver

The DVFS driver is responsible for varying the frequency and voltage of the ARM core.
Other software modules interface to it through a custom, kernel-space API. The mode can
be controlled manually through the API and automatically on those processors with the
required monitor hardware.

2.3.10.7 Backlight Driver

The backlight driver implements a standard Linux kernel-space interface for a Linux kernel
backlight core driver that, in turn, exposes LCD backlight control interface to user space
applications by sysfs.

The backlight driver controls the LCD backlight though the i.MX28 PWM modules
connected either directly to the LCD panel backlight LED or to the intermediate backlight
controller that sets backlight LED brightness based on input PWM signal. The LCD panel
driver implements a LCD specific part of backlight control which is registered with the
i.MX28 backlight driver. See Section 2.3.5, “i.MX28 Graphics,” for more details about the
LCD panel drivers

Pag. 28 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.3.10.8 LED Driver

The LED driver controls on-board LEDs connected to the i.MX28 PWM module. The LED
driver implements a standard interface that is exposed to user space applications by sysfs
and other kernel drivers though the kernel space API, which may use LEDs to warn about
different events, such as timer ticks or MMC data transfers.

2.3.10.9 Power Source Manager and Battery Charger

Power Source Manager and Battery charger drivers controls the i.MX28 power supply
module. The i.MX28 may be powered from different power sources that include:

•5 V wall power supply
•5 V USB
•Li-Ion 3.7 V battery

Regardless of the power input, the power supply supplies voltage to several output voltage
rails intended to power various on-chip and on-board components, such as ARM CPU core,
SDRAM, peripheral I/O devices and so on. The way that these output voltages are generated
depends on which power source is used. When the device is powered from a 5 V source, it
uses internal voltage regulators to convert input voltage. When the device is powered from a
battery source, it uses on-chip DC-DC converters. Certain software operations are required
during transition from one power source to another, for which the power source manager
driver is responsible. Also the power source manager notifies other drivers about power
source changes.
Thei.MX28 power supply contains a built-in battery charger module capable of charging Li-
Ion batteries. The battery charger driver implements a state machine that controls charging
current and protects the battery from damage caused by under or overcharging.

Both drivers are implemented in a single standalone module and do not expose any
interfaces to other kernel or userspace components except subscribing for different events
detected by the drivers.

2.3.10.10 CPUFreq Driver

The CPUFreq driver is built on top of the voltage regulators and clock framework and
implements a set of operating points that define clock speed of CPU, SDRAM and AHB bus
along with appropriate CPU voltage value. The CPUFreq driver is plugged into Linux
kernel CPUFreq subsystem that, in turn, implements a set of different policies (governors)
that control transitions between different operating points.
Pag. 29 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.4 Boot Loaders

A boot loader is a small program that runs first after a CPU powers up. A boot loader is
required to boot an ARM Linux system. The boot loader for ARM Linux serves several
purposes:

•Loads Linux kernel image to SDRAM
•Obtains proper information for the Linux kernel
•Passes control to the Linux kernel

NOTE

Not all boot loaders are supported on all boards.

2.4.1 i.MX28 Boot Loader

For the i.MX28, some boot loader functionality is delegated to the built-in ROM firmware
that is capable of loading a boot stream image containing the Linux kernel from different
locations. The bootstream, in turn, implements hardware initialization and an interface to the
Linux kernel. Since the i.MX28 built-in ROM is entirely implemented in hardware, it is not
described in this document.

The i.MX28 boot image may contain the following bootlets implementing general boot
loader functions:

•Boot prep
•Linux prep
•U-boot loader

Figure 2-6 shows block diagrams of two boot stream images.

Pag. 30 of 74 MCIMX28x Linux Reference Manual Rev.1.0

2.4.1.1 Boot Prep

The boot prep bootlet implements basic power supply, EMI controller initialization and
clock initialization necessary to start the Linux kernel.

2.4.1.2 Linux Prep

This component provides a standard interface between ARM Linux kernel and boot loader,
including:

•Generating a list of ARM tags containing necessary information, such as SDRAM size,
ARM CPU and machine identification and Linux kernel command line.

•Jumping to the Linux kernel that has already been downloaded to SDRAM by the
i.MX28 ROM firmware.

2.4.1.3 U-boot

U-boot is an open source universal boot loader for various embedded platforms including
ARM, PowerPC, MIPS and so on. For the i.MX28, U-boot is used to load Linux kernel
image to SDRAM over a network connection because the i.MX28 built-in ROM firmware
does not implement a TCP/IP network stack.

The i.MX28 U-boot port implements a driver for the built-in FEC ethernet controller used to
transfer data over TCP/IP network.

Chapter 3 Machine Specific Layer (MSL)
The Machine Specific Layer (MSL) provides the Linux kernel with the following machine-
dependent components:

•Interrupts including GPIO and EDIO (only on certain platforms)
•Timer
•Memory map
•General Purpose Input/Output (GPIO) including IOMUX on certain platforms These

Pag. 31 of 74 MCIMX28x Linux Reference Manual Rev.1.0

modules are normally available in the following directory:

< litb_dir>/rpm/BUILD/linux/arch/arm/mach-mx28 for imx28

platform The header files are implemented under the following directory:

< ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/include/mach

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operation and the software interfaces for MSL modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules, such
as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on some
platforms) are detailed. Each of the following sections contains an overview of the hardware
operation. For more information, see the corresponding device documentation.

3.1 Interrupts

The i.MX28 uses an Interrupt Collector module. The following sections explain the
hardware and software operation for the interrupts.

3.1.1 Interrupt Hardware Operation

The Interrupt Collector module controls and prioritizes a maximum of 128 internal and
external interrupt sources. Each source can be enabled and disabled by configuring the
ENABLE bit in the dedicated Hardware Interrupt Collector Interrupt register. When an
interrupt source is enabled and the

corresponding interrupt source is asserted, the Interrupt Collector asserts a normal or a fast
interrupt request to the ARM core depending on the ENFIQ bit value in the dedicated
Hardware Interrupt Collector Interrupt register.

The Interrupt Collectors interrupt requests are prioritized in the order of fast interrupts and
normal interrupts in order of highest priority level. There are four normal interrupt levels,
with zero level being the lowest priority. The interrupt levels are configurable through the
PRIORITY bits of the Hardware Interrupt collector Interrupt register. Only in supervisor
mode can the Interrupt Collector registers be accessed. A number of IRQ sources can be
expanded by using GPIO lines to assert interrupts.

3.1.2 Interrupt Software Operation

In ARM based processors, normal interrupt and fast interrupt are two different exceptions.
The exception vector addresses can be configured to start at a low address (0x0) or at a high
address (0xFFFF0000). The ARM Linux implementation chooses the high vector address

Pag. 32 of 74 MCIMX28x Linux Reference Manual Rev.1.0

model. The following file has a detailed description about the ARM interrupt architecture:
< ltib_dir>/rpm/BUILD/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

3.1.3 Interrupt Source Code Structure

The MSL interrupt layer is implemented in the source files shown in Table 3-1, located in
the directories indicated at the beginning of this chapter:

Table 3-1. Interrupt Files List

File Description

icoll.c Interrupt manipulation functions

irqs.h Interrupt source numbers

regs-icoll.h Interrupt Collector registers

entry-macro.S Interrupt source detection

3.1.4 Interrupt Programming Interface

The Machine Specific Layer implementation exports a single function that initializes the
Interrupt Collector and register interrupt manipulation routines for each interrupt source in
the system. This performs with the structures irq_chip and mxs_gpio_chip of the irq_chip
type that contain functions to enable, disable, and acknowledge interrupt sources.

The irq_chip is associated with i.MX28normal 128 interrupt sources while mxs_gpio_chi is used for
external GPIO interrupts. Each interrupt source is associated with one of the irq_chip structures with
the set_irq_chip call. After initialization, the interrupt can be used by the drivers through the request_irq()
and free_irq() functions to register device-specific interrupt handlers. Upon receiving the interrupt, the
interrupt code uses get_irqnr_and_base to detect the interrupt source, acknowledges the interrupt using

the registered irq_chip structure set by the MSL, and calls the registered device-specific interrupt
handler. Depending on the flags passed to the request_irq function, the code may disable the interrupt
using an irq_chip call before executing the device-specific handler.

Machine Specific Layer (MSL)

3.2 Timer

The Linux kernel relies on the underlying hardware to provide support for both the system

Pag. 33 of 74 MCIMX28x Linux Reference Manual Rev.1.0

timer (which generates periodic interrupts) and the dynamic timers (to schedule events).
After the system timer interrupt occurs, it does the following:

•Updates the system uptime
•Updates the time of day
•Reschedules a new process if the current process has exhausted its time slice
•Runs any dynamic timers that have expired
•Updates resource usage and processor time statistics The timer hardware consists of

four 32-bit 32 KHz timers.

3.2.1 Timer Hardware Operation

Each of the four timers consists of a 32-bit fixed count value and a 32-bit free-running count
value. In most cases, the free-running count decrements to 0. When it decrements to 0, it
sets an interrupt status bit associated with the counter, which causes:

•If the RELOAD bit is set to 1, the count is automatically copied to the free-running
counter and the count continues

•If the RELOAD bit is not set, the timer stalls when it reaches 0

Each timer has an UPDATE bit that controls whether the free-running-counter is loaded at
the same time that the fixed-count register is written from the CPU. The output of each
timer’s source select has a polarity control that allows the timer to operate on either edge.
The timers have multiple clock sources that include the PWM output signals and the on-chip
32 KHz XTAL that, in turn, can be programmed to 32 KHz, 8 KHz, 4 KHz or 1 KHz timer
update cycles.

Each of the four times have compare match register. When free-running counter equal match
value, it issue a interrupt.

3.2.2 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval. The timer then
registers its interrupt service routine and starts timing. The interrupt service routine is
required to service the OS for the purposes mentioned in Section 3.2, “Timer.” Another
function provides the time elapsed as the last timer interrupt.

3.2.3 Timer Features

The timer implementation supports the following features:
•Functions required by Linux to provide the system timer and dynamic timers.
•Generates an interrupt every 10 ms.

Pag. 34 of 74 MCIMX28x Linux Reference Manual Rev.1.0

3.2.4 Timer Source Code Structure

The timer module is implemented in the arch/arm/plat-mxs/timer-match.c file.

3.2.5 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock event
objects. This is done with the mxs_clocksource structure of struct clocksource type and
mxs_clockevent structure of struct mxs_clockevent type. Both structures provide routines
required for reading current timer values and scheduling the next timer event. The module
implements a timer interrupt routine that services the Linux OS with timer events for the
purposes mentioned in the beginning of this chapter.

3.3 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

3.3.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping
defined by the page table. For more information, see the ARM Technical Reference Manual
(TRM) from ARM Limited.

3.3.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX platforms as
defined in the <ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx28/ mx28evk.cfile.

3.3.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the physical to
virtual memory map for all the I/O modules.

3.3.4 Memory Map Source Code Structure

The Memory Map module implementation is in mx28evk.c under the platform-specific MSL directory.
The hardware.h header file is used to provide macros for all the IO module physical and virtual base
addresses and physical to virtual mapping macros. All of the memory map source code is in the in
the following directories:
< ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/include/mach
< ltib_dir>/rpm/BUILD/linux/arch/arm/mach-imx
<ltib_dir>/rpm/BUILD/linux/arch/arm/mach-

Pag. 35 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Table 3-2 lists the source file for the memory map.
Machine Specific Layer (MSL)

3.3.5 Memory Map Programming Interface

The Memory Map is implemented in the mx28evk.c file to provide the map between physical
and virtual addresses. It defines an initialization function to be called during system startup.

3.4 Pin Multiplexing

The i.MX28 implements a flexible pin multiplexing mechanism that permits using the same
SoC I/O pins for different purposes depending on the board hardware configuration. The
following section describes the Pin Multiplexing software and hardware operation

3.4.1 Pin Multiplexing Hardware Operation

The i.MX28 SoC implements 120 digital interface pins divided into four banks. The first
three banks implement multiplexed pins where each pin can be routed up to three different
modules or serve as GPIO. The fourth bank implements EMI pins which are not
multiplexed.

The pin control interface has the following features:
•All digital pins have selectable output drive strengths
•All EMI pins have 1.8/2.5 V and 3.3 V selects
•Several digital pins can be programmed to enable pull up resistors

3.4.2 Pin Multiplexing Software Operation

The MSL contains board specific files that define I/O pin routing and provide functions for device
drivers to set up pin routing during the initialization stage. These mechanisms allow board-
independent drivers where all board-specific details are hidden within the MSL. The pin
multiplexing implements a pin resource manager intended to prevent conflicting access to shared
I/O pins by different device drivers.

3.4.3 Pin Multiplexing Source Code Structure

The MSL Pin Multiplexing layer is implemented in the directories listed at the beginning of this
chapter.

The files are listed in Table 3-4.
Table 3-4. Pin Multiplexing Source Files

File Description

mx28_pinsh I/O pins definitions

Pag. 36 of 74 MCIMX28x Linux Reference Manual Rev.1.0

pinctrl.c Pin Multiplexing API implementation

3.4.4 Pin Multiplexing Programming Interface

The MSL Pin Multiplexing module provides a kernel-space internal MSL interface to
control I/O pins. This interface is not exposed to other device drivers or kernel components.
The interface indirectly sets up pin configuration through driver-specific callbacks
implemented by the MSL. Board-specific details are hidden for easier driver migration.
The Pin Multiplexing API defines the following structures and

functions: enum pin_fun, enum pin_strength, enum pin_voltage

Define pin routing and configuration.
struct pin desc, struct pin group

Describe a group of pins.
int mxs_request_pin(unsigned id, enum pin_fun fun, char *label)

Request access to a pin. The label should be used later to configure pin parameters.

void mxs_release_pin(unsigned id, char *label) Release the pin.

int mxs_request_pin_group(struct pin_group *pin_group, char *label) Request access to a
group of pins.

void mxs_release_pin_group(struct pin_group *pin_group, char *label Release pin group.

void mxs_pin_strength(unsigned id, enum pin_strength strength, char *label) Set pin output strength.

void mxs_pin_voltage(unsigned id, enum pin_voltage voltage, char *label) Set pin output voltage.

void mxs_pin_pullup(unsigned id, int enable, char *label) Control pull up

resistor of a pin.

3.4.5 GPIO With Pin Multiplexing

The Pin Multiplexing module allows routing multiplexed pins to the general purpose
input/output module that provides an API to configure pins and a central place to configure
GPIO interrupts. Once the i.MX28 pin is routed to the GPIO module, this pin can be
manually configured by a set of the pin multiplexing registers dedicated to the GPIO
module. These registers allow setting pin direction (input or output), pin output value, and
pin configuration as an interrupt source by specifying an interrupt trigger mode (edge or
level, high or low).

Each Linux kernel driver or subsystem can request an external pin to be configured as GPIO
and then control the pin state using a kernel-space standard Linux GPIO API. The GPIO
pins are handled with the standard GPIO API as documented in Documentation/gpio.txt.
The MSL GPIO module implementation is contained in the gpio.c and gpio.h files in the

Pag. 37 of 74 MCIMX28x Linux Reference Manual Rev.1.0

directories indicated at the beginning of this chapter.

Chapter 4 Direct Memory Access Controller (DMAC) API
The Direct Memory Access Controller (DMAC) provides 16 channels supporting linear
memory, 2D memory, and FIFO transfers to provide support for a wide variety of DMA
operations.

4.1 Hardware Operation

The i.MX28 device is equipped with two AHB-to-APBH/AHB-to-APBX bridges with built-
in DMA capability that allows programmed data transfers between SDRAM and peripheral
devices. The DMA is abstracted as a number of channels dedicated to on-chip peripheral
devices such as UART, ADC/DAC, GPMI and so on. Each DMA channel is programmed by
a set of per-channel registers and a special DMA command structure located in memory. A
command describes a single DMA transaction and can be chained with other commands to
set up multiple DMA transfers.

Each DMA channel implements a semaphore used to start and stop the DMA channels. The
semaphore may contain values from 0 to 255 that are set by software. The DMA channel
starts transferring data on writing a semaphore value greater than zero and continues
operation until the semaphore is decremented to zero or an error occurs. The semaphore is
decremented after completion of a single DMA transfer if the corresponding flag is set
within the command structure.

The DMA channel may generate interrupt events on command completion or on an error.
This is configurable through a set of DMA channel registers.

The DMA includes the following features:
•Sixteen channels support linear memory, 2D Memory, and FIFO for both source and

destination
•DMA chaining for variable length buffer exchanges and high allowable interrupt

latency requirement
•Increment, decrement, and no-change support for source and destination addresses
•Each channel is configurable to response to any of the DMA request signals
•Supports 8, 16, or 32-bit FIFO and memory port size data transfers
•DMA burst length configurable up to a maximum of 16 words, 32 half-words, or 64

bytes for each channel
•Bus utilization control for the channel that is not triggered by a DMA request
•Burst time-out errors terminate the DMA cycle when the burst cannot be completed

within a programmed time count
•Buffer overflow error terminates the DMA cycle when the internal buffer receives more

than 64 bytes of data
•Transfer error terminates the DMA cycle when a transfer error is detected during a

Pag. 38 of 74 MCIMX28x Linux Reference Manual Rev.1.0

DMA burst

Direct Memory Access Controller (DMAC) API

4.2 Software Operation

Prior to using a DMA channel, the driver should register an interrupt handler for interrupts
generated by the DMA channel in order to receive DMA error or completion events.

The most used scenario of DMA operation is when a device driver wants to transfer a
number of bytes to or from a memory buffer located on SDRAM. First, it allocates and
initializes a DMA command structure or a list of command structures for multiple transfers.
Then it resets the DMA channel and configures the channel registers to point to a command
structure for the first DMA transfer. When all the required initialization is done, the DMA
channel is started by setting a DMA channel semaphore.

The module provides an API for other drivers to control DMA channels. The DMA software
operations are as follows:

•Requesting DMA channel
•Initialization of the channel
•Setting configuration of DMA channel
•Enabling/Disabling DMA
•Getting DMA transfer status
•DMA IRQ handler

4.3 Source Code Structure

The header file, dmaengine.h, is available in the directory: arch/arm/plat-

mxs/include/mach/

Table 4-1 lists the source files available in the directory, arch/arm/plat-mxs/
 Table 4-1. DMA API Files

File Description

dma-apbh.c, dma-apbx.c Parameters of DMA channels

dmaengine.c DMA API functions

4.4 Programming Interface

The module implements custom DMA API. Standard API is not supported. Refer to the
doxygen files in the release notes for more information on the methods implemented in the
driver.

Pag. 39 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 5 Persistent Bits Driver
Persistent bits refers to a small number of registers that persist over power cycles.

5.1 Hardware Operation

The persistent bit block uses persistent storage and resides in a special power domain (crystal
domain) that remains powered up even when the rest of the device is in its powered-down state. Six
32-bit persistent bit registers. They are as below:

•HW_RTC_PERSISTENT0—holds bits used to configure various hardware settings
•HW_RTC_PERSISTENT1—holds bits related to the ROM and redundant boot handling
•HW_RTC_PERSISTENT2–5—general purpose use

5.2 Software Operation

The persistent bit support code is implemented as a user-space accessible API, but with the
configuration of the bits done by the board setup code. The configuration structures map the name
of a bit-field to a part of a 32-bit hardware register; for example:
{ .reg = 1, .start = 1, .width = 1, .name = "NAND_SECONDARY_BOOT" }

declares that the name NAND_SECONDARY_BOOT is mapped to the HW_RTC_PERSISTENT1
register, starting at bit 1, having a width of 1 bit (a single bit register).

User space accesses the persistent bits by sysfs device attributes in the
/sys/devices/platform/mxs-persistent.0 directory. Access is done by reading and writing the
attribute files.

For example, to read:
cat sys/devices/platform/mxs-persistent.0/NAND_SECONDARY_BOOT
0
#

To write:
echo -n 1 > sys/devices/platform/mxs-
persistent.0/NAND_SECONDARY_BOOT

Pag. 40 of 74 MCIMX28x Linux Reference Manual Rev.1.0

5.3 Source Code Structure

The persistent bit driver code listed in Table 5-1, is located in:
arch/arm/mach-mx28/include/mach/

arch/arm/mach-mx28

drivers/misc/

Table 5-1. Persistent Bits Driver Files

File Description

mx28.h Device configuration structures

devices.c Device configuration

mxs-persistent.c Driver file

5.4 Menu Configuration Options

The persistent bit driver is unconditionally compiled into the kernel image.

5.5 Programming Interface

The kernel persistent bit API is defined by means of the following structures to facilitate persistent
bit configuration.

struct mxs_persistent_bit_config { int reg;
int start; int width; const char *name;

} ;

struct mxs_platform_persistent_data { const struct mxs_persistent_bit_config
*bit_config_tab; int bit_config_cnt;

} ;

The structure mxs_persistent_bit_config defines a single bit that always lies in a single hardware

32-bit register. The structure mxs_platform_persistent_data contains all of the persistent bit
definitions which are valid for the given board.

Pag. 41 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 6 Unique ID on Boot Media
The i.MX28 Unique ID (UID) storage feature allows customers to keep a limited sequence
of bytes in a secured place such as:

• One-Time-Programmed (OTP) bits

6.1 Software Operation

The Unique ID module provides a sysfs interface to end users. When the module is started, a new
sys entry is created: /sys/uid. It contains one or more subdirectories that match the UID provider
registered in the system. In turn, each of the subdirectories contains files id and id.bin. These files can
be read from the user space and written to with root privileges. Data that is read from or written to id
is in human-readable form, while id.bin provides access to the raw binary data. The UID provider can
enable access to id, id.bin or both.

Before a UID value can be written, the module must be unlocked. This is achieved by writing 1 to
the file
/sys/modules/unique-id/parameters/unlock. The access is limited to three minutes. After three
minutes, the module is locked and must be enabled again.

The nature of UID storage forces some limits and assumptions:
• For OTP—bits can be written only once and the user has access to only three long

words (3 × 32 = 96 bits) of data

6.2 Programming Interface

A provider shall register the table of functions using a call to:
uid_provider_init(char *name, struct uid_ops *ops, void *context).

This function registers the table ops as a new UID provider with name name. When finished, the
provider should be unregistered using a call to:

uid_provider_remove(char *name)

It completely removes the UID provider from the system.

The structure uid_ops contains two pointers to functions id_show and id_store. Both of these functions
follow the conventions for attribute accessors, except for the added first parameter void *context,
which is passed to uid_provider_init.

6.3 Source Code Structure

The Unique ID module code listed in Table 6-1, is located in:
arch/arm/plat-mxs/include/mach/

Pag. 42 of 74 MCIMX28x Linux Reference Manual Rev.1.0

arch/arm/plat-mxs/

Table 6-1. Unique ID Files

File Description

unique-id.c Generic UID code

unique-id.h Header with function prototypes

otp.c Implementation of OTP UID provider

6.4 Menu Configuration Options

The following Linux kernel configurations are provided for this module:
•CONFIG_MXS_UNIQUE_ID = y
•CONFIG_MXS_UNIQUE_ID_OTP = y

Pag. 43 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 7 CPU Frequency Scaling (CPUFREQ) Driver
The CPU frequency scaling device driver allows the clock speed of the CPU to be changed
on the fly. Once the CPU frequency is changed, the voltages VDDD, VDDD_BO, VDDIO,
and VDDA are changed to the voltage value defined in profiles[]. This method can reduce
power consumption (thus saving battery power), because the CPU uses less power as the
clock speed is reduced.

7.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on the fly. If the
frequency is not defined in profile[], the CPUFREQ driver changes the CPU frequency to the nearest
frequency in the array. The CPU frequency 64 MHz and below in the array profiles[] can be changed
only if both USB clock usage and LCD clock usage are zero. The frequencies are manipulated using
the clock framework API, while the voltage is set using the regulators API. By default, the
userspace CPU frequency governor is used with CPU frequency, which can be changed manually.
To change CPU frequency automatically, the conservative CPU frequency governor can be used.
Refer to the API document for more information on the functions implemented in the driver (in the
doxygen folder of the documentation package).

To view what values the CPU frequency can be changed to in KHz (The values in the first column

are the frequency values) use this command:
cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

To change the CPU frequency to a value that is given by using the command above (for

example, to 392.727 MHz) use this command :
echo 392727 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The frequency 392727 is in KHz, which is 392.727 MHz. The maximum frequency can be checked

using this command:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

Use the following command to change to conservative CPU frequency governor:

echo conservative > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Pag. 44 of 74 MCIMX28x Linux Reference Manual Rev.1.0

7.2 Source Code Structure

Table 7-1 shows the source files and headers available in the following directory:

< ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs/

Table 7-1. CPUFREQ Driver Files

File Description

cpufreq.c CPUFREQ functions

7.3 Menu Configuration Options

The following Linux kernel configuration is provided for this module:
• CONFIG_CPU__FREQ—In menuconfig, this option is

located under CPU Power Management > CPU Frequency
scaling The following options can be selected:

— CPU Frequency scaling
— CPU frequency translation statistics
— Default CPU frequency governor (userspace)
— Performance
governor —
Powersave governor
— Userspace governor for userspace frequency scaling
— Conservative CPU frequency governor
— CPU frequency driver for i.MX CPUs

7.3.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

Pag. 45 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 8 i.MX28 Static Power Management Driver
Static Power Management refers to the system power management states set according to
the operating mode, as opposed to the dynamic power management where the state is
changing according to the given limitations, based on parameters such as system load. Static
power management in Linux usually refers to the power saving states. Linux power states
are:

•Standby/power-on suspend (standby)
•Suspend-to-RAM (mem)
•Suspend-to-disk (disk)

Refer to Documentation/power/states.txt within the Linux kernel source tree for more information on
these states. Within the i.MX28 BSP only the standby state is supported.

8.1 Hardware Operation

Standby state, which is also sometimes referred to as Wait for Interrupt (WFI) mode, is
entered when the corresponding ARM co-processor instruction (mcr p15, 0, r0, c7, c0, 4) is
executed. The i.MX28 also has an additional feature for more power saving in WFI mode,
called INTERRUPT_WAIT mode. This mode is activated by setting a 1 in the
INTERRUPT_WAIT bit of the CLKCTRL_CPU register. This activation should be
performed prior to WFI command execution. The coprocessor instruction sequence enables
an internal gating signal. This signal triggers the write buffers drain and guarantees that the
CPU is in the idle state. With the INTERRUPT_WAIT bit is set, after the WFI command
execution, the CPU halts on the mcr instruction. When an interrupt or a FIQ occurs, the mcr
instruction completes and the IRQ/FIQ handler is entered normally.

8.2 Software Operation

The standby state is implemented within the i.MX28 BSP to minimize the power
consumption as much as possible. Before issuing the WFI instruction, the following
preparation steps are done:

•Interrupts are disabled except for those that are wakeup sources
•DMA is disabled
•CPU is switched to bypass mode (direct clocking from crystal)
•RAM is switched to bypass mode and put into self-refresh
•PLL is switched off; Xtal oscillator is switched on
•INTERRUPT_WAIT bit is set in the CPU Clock Control register (CLKCTRL_CPU)

The wakeup sources and the system state can be set by the sysfs interface. To activate a wakeup
Pag. 46 of 74 MCIMX28x Linux Reference Manual Rev.1.0

source, write 1 to /sys/bus/platform/devices/<device>/power/wakeup.

For example:
echo 1 > /sys/bus/platform/devices/mxs-duart.0/power/wakeup To put the entire

system into standby mode, run the following command:
echo standby > /sys/power/state

8.3 Source Code Structure

The platform-specific static power management code listed in Table 8-1, is located in
arch/arm/mach-mx28/.

Table 8-1. Power Management Driver Files

File Description

pm.c High level code interfacing with the platform-independent static power management API

sleep.S Assembly code implementing the low-level part of standby mode

sleep.h Header file containing definitions and structures

8.4 Menu Configuration Options

The following Linux kernel configurations are provided for this driver:
• CONFIG _PM [=Y]

Generic configuration option to enable static power management. Once it is enabled,
the source files listed above are automatically selected for compilation.

Pag. 47 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 9 NAND GPMI Flash Driver
The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the i.MX28. Only the hardware specific layer
has to be implemented for the NAND MTD driver to operate. The rest of the functionality
such as Flash read/write/erase is automatically handled by the generic layer provided by the
Linux MTD subsystem for NAND devices.

9.1 Hardware Operation

NAND Flash is a nonvolatile storage device used for embedded systems. It does not support
random accesses of memory as in the case of RAM or NOR Flash. Reading or writing to
NAND Flash must be done through the GPMI. NAND Flash is a sequential access device
appropriate for mass storage applications. Code stored on NAND Flash can not be executed
from there. Code must be loaded into RAM memory and executed from there. The i.MX28
contains a hardware error-correcting block.

9.2 Software Operation

MTDs in Linux cover all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes. The MTD subsystem provides uniform access to all such devices.
Above the MTD devices there could be either MTD block device emulation with a Flash file
system (JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the
volumes or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above
it. The hardware specific driver interfaces with the GPMI module on
i.MX28. It implements the lowest level operations such as read, write and erase. If enabled,
it also provides information about partitions on the NAND device—this information has to
be provided by platform code.

The NAND driver is the point where read/write errors can be recovered, if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at http://www.linux-
mtd.infradead.org

Pag. 48 of 74 MCIMX28x Linux Reference Manual Rev.1.0

http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/

9.2.1 Basic Operations: Read/Write

The NAND driver exports the following callbacks:
•mil_ecc_read_page (with ECC)

•mil_ecc_write_page (with ECC)

•mil_read_byte (without ECC)
•mil_read_buf (without ECC)
•mil_write_buf (without ECC)

•mil_ecc_read_oob (with ECC)

14-1
NAND GPMI Flash Driver

•mil_ecc_write_oob (with ECC)

These functions read the requested amount of data, with or without error correction. In the case of
read, the mil_incoming_buffer_dma_begin function is called, which creates the DMA chain, submits it to
execute, and waits for completion. The write case is a bit more complex: the data to be written is
mapped and flushed out by calling mil_incoming_buffer_dma_begin before processing the
command NAND_CMD_PAGEPROG.

9.2.2 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a hardware
correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k +
218).

9.2.3 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND Control Block
(NCB). Its presence is detected by magic signatures. When a signature is found, the boot block
candidate is checked for errors using Hamming code. If errors are found, they are fixed, if possible.
If the NCB is found, it is parsed to retrieve timings for the NAND chip.

All boot control blocks are created when formatting the medium using the user space kobs
application.

Pag. 49 of 74 MCIMX28x Linux Reference Manual Rev.1.0

9.2.4 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to determine if a
block is bad, dynamically, but to improve performance it is done at boot time. The badness of the
erase block is determined by checking a pattern in the beginning of the spare area on each page of
the block. However, if the chip uses hardware error correction, the bad marks falls into the ECC
bytes area. Therefore, if hardware error correction is used, the bad block mark should be moved.
The driver decides if bad block marks should be moved if there is no NAND control block. Then, to
prevent another move of bad block marks, the driver writes the default NCB to the Flash.

The following functions that deal with bad block handling are grouped together in the gpmi-nfc-mil.c
file:

•mil_block_bad

•mil_scan_bbt

9.2.5 Special NAND supporting

9.3 Source Code Structure

The NAND driver is located in the drivers/mtd/nand/gpmi-nfc directory. The following files are
included in the NAND driver:

•gpmi-nfc-main.c

•gpmi-nfc-mil.c

•gpmi-nfc-hal-common.c

•gpmi-nfc-hal-v0.c

•gpmi-nfc-hal-v1.c

•gpmi-nfc-hal-v2.c

•gpmi-nfc-event-reporting.c

•gpmi-nfc-rom-v0.c

•gpmi-nfc-rom-v1.c

•gpmi-nfc-rom-common.c

•gpmi-nfc.h

•gpmi-nfc-gpmi-regs-v0.h

•gpmi-nfc-gpmi-regs-v2.h

•gpmi-nfc-gpmi-regs-v3.h

•gpmi-nfc-bch-regs-v0.h

•gpmi-nfc-bch-regs-v1.h

•gpmi-nfc-bch-regs-v2.h

Pag. 50 of 74 MCIMX28x Linux Reference Manual Rev.1.0

9.4 Menu Configuration Options

To enable the NAND driver, the following options must be set:
•CONFIG_MTD_NAND_GPMI_NFC = [Y | M]

In addition, these MTD options must be enabled:
•CONFIG_MTD_NAND = [y | m]
•CONFIG_MTD = y
•CONFIG_MTD_PARTITIONS = y
•CONFIG_MTD_CHAR = y
•CONFIG_MTD_BLOCK = y

In addition, these UBI options must be enabled:
•CONFIG_MTD_UBI=y
•CONFIG_MTD_UBI_WL_THRESHOLD=4096
•CONFIG_MTD_UBI_BEB_RESERVE=1
•CONFIG_UBIFS_FS=y
•CONFIG_UBIFS_FS_LZO=y
•CONFIG_UBIFS_FS_ZLIB=

Chapter 10 I2C Driver
I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange,
minimizing the interconnection between devices. The I2C driver for Linux has two parts:

•I2C bus driver—low level interface that is used to talk to the I2C bus
•I2C chip driver—acts as an interface between other device drivers and the I2C bus driver

10.1 I2C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user space. The
standard Linux kernel contains a core I2C module that is used by the chip driver to access the I2C
bus driver to transfer data over the I2C bus. The chip driver uses a standard kernel space API that is
provided in the Linux kernel to access the core I2C module. The standard I2C kernel functions are
documented in the files available under Documentation/i2c in the kernel source tree. This bus driver
supports the following features:

•Compatible with the I2C bus standard
•Bit rates up to 400 Kbps
•Starts and stops signal generation/detection
•Acknowledge bit generation/detection
•Interrupt-driven, byte-by-byte data transfer
•Standard I2C master mode

Pag. 51 of 74 MCIMX28x Linux Reference Manual Rev.1.0

10.2 I2C Device Driver Overview

The I2C device driver implements all the Linux I2C data structures that are required to communicate
with the I2C bus driver. It exposes a custom kernel space API to the other device drivers to transfer
data to the device that is connected to the I2C bus. Internally, these API functions use the standard
I2C kernel space API to call the I2C core module. The I2C core module looks up the I2C bus driver
and calls the appropriate function in the I2C bus driver to transfer data. This driver provides the
following functions to other device drivers:

•Read function to read the device registers
•Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

10.3 Hardware Operation

The I2C module provides the functionality of a standard I2C master and slave. It is designed to be
compatible with the standard Philips I2C bus protocol. The module supports up to 64 different clock
frequencies that can be programmed by setting a value to the Frequency Divider Register (IFDR). It
also generates an interrupt when one of the following occurs:

•One byte transfer is completed
•Address is received that matches its own specific address in slave-receive mode
•Arbitration is lost

10.4 Software Operation

The I2C driver for Linux has two parts: an I2C bus driver and an I2C chip driver.

10.4.1I2C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important field in this
structure is struct i2c_algorithm *algo. This field is a pointer to the i2c_algorithm structure that
describes how data is transferred over the I2C bus. The algorithm structure contains a pointer to a
function that is called whenever the I2C chip driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is loaded. Certain
architectures have more than one I2C module. If so, the driver registers separate i2c_adapter structures
for each I2C module with the I2C core. These adapters are unregistered (removed) when the driver
is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end of a data
transmission before transmitting the next byte. It times out and returns an error if the transfer

Pag. 52 of 74 MCIMX28x Linux Reference Manual Rev.1.0

complete signal is not received. Because the I2C bus driver uses wait queues for its operation, other
device drivers should be careful not to call the I2C API methods from an interrupt mode.

10.4.2I2C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, i2c_driver, describes the
I2C chip driver. The fields of interest in this structure are flags and attach_adapter. The flags field is
set to a value I2C_DF_NOTIFY so that the chip driver can be notified of any new I2C devices, after
the driver is loaded. The attach_adapter callback function is called whenever a new I2C bus driver is
loaded in the system. When the I2C bus driver is loaded, this driver stores the i2c_adapter structure
associated with this bus driver so that it can use the appropriate methods to transfer data.

10.5 Driver Features

The I2C driver supports the following features:
•I2C communication protocol
•I2C master mode of operation

NOTE

Tion.he I2C driver do not support the I2C slave mode of operat

Pag. 53 of 74 MCIMX28x Linux Reference Manual Rev.1.0

10.7 Menu Configuration Options

• CONFIG_I2C_MXS

10.8 Programming Interface

The I2C device driver can use the standard SMBus interface to read and write the registers of the

device connected to the I2C bus. For more information, see <ltib_dir>/rpm/BUILD/linux/include/linux/i2c.h.

10.9 Interrupt Requirements

The I2C module generates many kinds of interrupts. The highest interrupt rate is associated with the
transfer complete interrupt as shown in Table 19-1.

. Table 19-1. I2C Interrupt Requirements

Parameter Equation Typical Best Case

Rate Transfer Bit Rate/8 25,000/sec 50 ,000/sec

Latency 8/Transfer Bit Rate 40 µs 20 µs

The typical value of the transfer bit-rate is 200 Kbps. The best case values are based on a baud rate
of 400 Kbps (the maximum supported by the I2C interface).

Pag. 54 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 11 MMC/SD/SDIO Host Driver
The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO) Host driver
implements a standard Linux driver interface to the SSP SD/MMC module. The host driver is part
of the Linux kernel MMC framework.

The MMC driver has the following features:
•1- bit or 4-bit operation for SD and SDIO cards
•Supports card insertion and removal detections
•Supports the standard MMC commands
•DMA data transfers
•Power management
•Supports 1/4/8-bit operations for MMC cards

11.1 Hardware Operation

The new high speed MMC communication is based on a 711-pin serial bus designed to operate in a
low voltage range. The host controller module controls the card by sending commands and running
data accesses from/to the card. The two communication protocols defined by the MMC
specifications: SD and SPI. Only SD mode is supported.

11.2 Software Operation

The host controller driver is responsible for implementing the mmc_host_ops structure, with
request, set_ios, and get_ro functions. These functions are called by the bus protocol driver. The
host controller driver talks directly to the hardware.

The mxs_mmc_request function handles both read and write requests that come from the protocol
driver. It calls the function mxs_mmc_start_cmd which configures the proper hardware registers
depending on the command type, then runs the DMA operation, and waits for completion.

The mxs_mmc_set_ios function sets the bus width, voltage level, and clock rate according to the
bus protocol driver requirements.

The mxs_mmc_get_ro function returns the status of the write-protection signal. This signal is retrieved
using a helper function provided by the platform data callback, otherwise the driver assumes the
card is read-write.

Pag. 55 of 74 MCIMX28x Linux Reference Manual Rev.1.0

11.3 Driver Features

The MMC driver supports the following features:
•Provides all the entry points to interface with the Linux MMC core driver
•MMC and SD cards
•Recognizes data transfer errors such as command time outs and CRC errors
•Power management

11.4 Source Code Structure

The driver consists only of the file: drivers/mmc/mxs-mmc.c

11.5 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these
options, use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select
Configure the Kernel and exit. When the next screen appears, select the following options to enable
this module:

•CONFIG_MMC—Build support for the MMC bus protocol. In menuconfig, this option is
available under
Device Drivers > MMC/SD/SDIO Card
support By default, this option is Y.

•CONFIG_MMC_BLOCK—Build support for MMC block device driver, which can be used to
mount the file system. In menuconfig, this option is available under Device Drivers >
MMC/SD Card Support > MMC block device driver By default, this option is Y.

•CONFIG_MMC_MXS—i.MX23/i.MX28 driver. In menuconfig, this option is available under
Device Drivers > MMC/SD Card Support > Freescale MXC Multimedia Card Interface
support.

•CONFIG_MMC_UNSAFE_RESUME—Used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under
Device drivers > MMC/SD/SDIO Card Support > Allow unsafe resume.

11.6 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with the i.MX
SSP SD/MMC mode module. See the BSP API document (in the doxygen folder of the
documentation package), for additional information.

Pag. 56 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 12 Universal Asynchronous Receiver-Transmitter
(UART) Driver
Thei.MX28 board contains six serial Universal Asynchronous Receiver-Transmitters (UARTs). One
UART has no DMA support and is intended to be used as a debug console (Debug UART). Five
UARTs are a high-performance UARTs, which are intended to be used by applications (Application
UART, appUART). They offers similar functionality to the industry-standard 16C550 UART device
and support baud rates of up to 3.25 Mbits/s. Unlike the debug UART, the application UARTs
cannot be used as a serial console.

12.1 Application UART

The following sections describe the hardware and software operation as well as the code structure
of the Application UARTs.

12.1.1Hardware Operation

The CPU or the DMA controller reads and writes data and control/status information through the
APBX interface. The transmit and receive paths are buffered with internal FIFO memories, enabling
up to 16-bytes to be stored independently in both transmit and receive modes. Two DMA channels
are supported, one for transmit and one for receive. If a time-out condition occurs in the middle of a
receive DMA block transfer, then the UART ends the DMA transfer and signals the end of the DMA
block transfer. A receive DMA can be set up to get the status of the previous receive DMA block
transfer. The status indicates the amount of valid data bytes in the previous receive DMA block
transfer.

If a framing, parity, or break error occurs during reception, the appropriate error bit is set and stored
in the FIFO. If an overrun condition occurs, the overrun register bit is set immediately and FIFO
data is prevented from being overwritten. The FIFOs can be programmed to be one-byte deep,
providing a conventional double-buffered UART interface. The modem status input signal Clear To
Send (CTS) and output modem control line Request To Send (RTS) are supported. A programmable
hardware flow control feature uses the nUARTCTS input and the nUARTRTS output to
automatically control the serial data flow.

12.1.2Software Operation

The application UART driver is implemented as a UART driver registered with a UART core in the
Linux kernel and thus provides a standard serial driver interface to Linux. The driver can operate in
both PIO mode and DMA mode. DMA mode is the default and it allows the use of the FIFO in an
optimum manner. For more details, refer to Documentation/serial/driver. The driver does not
support a console on the application UART port.

Pag. 57 of 74 MCIMX28x Linux Reference Manual Rev.1.0

12.1.3Source Code Structure

The application UART driver consists of the following files:
drivers/serial/mxs-auart.c drivers/serial/mxs-auart.h

12.2 Debug UART

The following sections describe the hardware and software operation as well as the code structure
of the Debug UART.

12.2.1Hardware Operation

The debug UART performs:
•Serial-to-parallel conversion on data received from a peripheral device
•Parallel-to-serial conversion on data transmitted to the peripheral device

The CPU reads and writes data and control/status information through the APBX interface. The
transmit and receive paths are buffered with internal FIFO memories.

12.2.2Software Operation

The debug UART driver is implemented as a UART driver registered with UART core in the Linux
kernel and thus provides a standard serial driver interface to Linux. The driver operates in interrupt
mode and uses the FIFO in an optimum manner. Refer to Documentation/serial/driver for more
details. The driver supports a console on the debug UART port.

12.2.3Source Code Structure

The debug UART driver consists of the following files:
drivers/serial/mxs-duart.c drivers/serial/mxs-duart.h

12.3 Menu Configuration Options

The following Linux kernel configurations are provided for this module:
•CONFIG_SERIAL_MXS_AUART = [y|m]

Configuration option to enable the application UART driver.
•CONFIG_SERIAL_MXS_DUART = [y|m]

Configuration option to enable the debug UART driver.
•CONFIG_SERIAL_MXS_DBG_CONSOLE

Configuration option to enable the console on the debug UART.

Pag. 58 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 13 USB Driver
The universal serial bus (USB) driver implements a standard Linux driver interface to the ARC
USB-HS
OTG controller. The USB provides a universal link that can be used across a wide range of
PC-to-peripheral interconnects. It supports plug-and-play, port expansion, and any new USB
peripheral that uses the same type of port.

The ARC USB controller is enhanced host controller interface (EHCI) compliant. This USB driver
has the following features:

•High Speed/Full Speed Host Only core (HOST1)
•Host mode—Supports HID (Human Interface Devices), MSC (Mass Storage Class), and PTP

(Still Image) drivers
•Peripheral mode—Supports MSC, and CDC (Communication Devices Class) drivers
•Embedded DMA controller

13.1 Architectural Overview

A USB host system is composed of a number of hardware and software layers. Figure 24-1 shows a
conceptual block diagram of the building block layers in a host system that support USB 2.0.

Figure 24-1. USB
Block Diagram

Pag. 59 of 74 MCIMX28x Linux Reference Manual Rev.1.0

13.2 Hardware Operation

For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf available at
http://www.usb.org/developers/docs/.

The i.MX28 EVK has a single Micro-AB receptacle and standard A. Mirco-AB can accept either a
type Micro-A (i.MX28 acts as a USB host) or Micro-B (i.MX28 acts as an USB gadget) plug. The
A-type receptacle has the 5th pin grounded while this pin on the B-type is floating. The state of this
pin can be read from the USBPHY STATUS register. When the pin state is changed, the USB
control interrupt is triggered. The standard A port is dedicate USB host only port

13.3 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it
only implements the hardware specified initialization functions. For the USB peripheral, it
implements the gadget framework.

static struct usb_ep_ops fsl_ep_ops = {
.enable = fsl_ep_enable,

.disable = fsl_ep_disable,

.alloc_request = fsl_alloc_request,

.free_request = fsl_free_request,

.queue = fsl_ep_queue,

.dequeue = fsl_ep_dequeue,

.set_halt = fsl_ep_set_halt,

.fifo_status = arcotg_fifo_status,

.fifo_flush = fsl_ep_fifo_flush, /* flush fifo */
} ; static struct usb_gadget_ops

fsl_gadget_ops = {
.get_frame = fsl_get_frame,
.wakeup = fsl_wakeup,

/* .set_selfpowered = fsl_set_selfpowered, */ /* Always selfpowered */
.vbus_session = fsl_vbus_session,
.vbus_draw = fsl_vbus_draw,
.pullup = fsl_pullup,
} ;

•fsl_ep_enable—configures an endpoint making it usable
•fsl_ep_disable—specifies an endpoint is no longer usable
•fsl_alloc_request—allocates a request object to use with this endpoint
•fsl_free_request—frees a request object
•arcotg_ep_queue—queues (submits) an I/O request to an endpoint
•arcotg_ep_dequeue—dequeues (cancels, unlinks) an I/O request from an endpoint
•arcotg_ep_set_halt—sets the endpoint halt feature
•arcotg_fifo_status—get the total number of bytes to be moved with this transfer

descriptor For OTG, an OTG finish state machine (FSM) is implemented.

Pag. 60 of 74 MCIMX28x Linux Reference Manual Rev.1.0

http://www.usb.org/developers/docs/

13.4 Driver Features

The USB stack supports the following features:
•USB device mode
•Mass storage device profile—subclass 8-1 (RBC set)
•USB host mode
•HID host profile—subclasses 3-1-1 and 3-1-2. (USB mouse and keyboard)
•Mass storage host profile—subclass 8-1
•Ethernet USB profile—subclass 2
•DC PTP transfer

13.5 Source Code Structure

Table 24-1 shows the source files available in the source directory,
<ltib_dir>/rpm/BUILD/linux/drivers/usb.

/ Table 13-1. USB Driver Files

File Description

host/ehci-hcd.c Host driver source file

host/ehci-arc.c Host driver source file

host/ehci-mem-iram.c Host driver source file for IRAM support

host/ehci-hub.c Hub driver source file

host/ehci-mem.c Memory management for host driver data structures

host/ehci-q.c EHCI host queue manipulation

host/ehci-q-iram.c Host driver source file for IRAM support

gadget/arcotg_udc.c Peripheral driver source file

gadget/arcotg_udc.h USB peripheral/endpoint management registers

otg/fsl_otg.c OTG driver source file

otg/fsl_otg.h OTG driver header file

otg/otg_fsm.c OTG FSM implement source file

otg/otg_fsm.h OTG FSM header file

gadget/fsl_updater.c FSL manufacture tool usb char driver source file

gadget/fsl_updater.h FSL manufacture tool usb char driver header file

Pag. 61 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Table 13-2 shows the platform related source files.
Table 13-2. USB Platform Source Files

File Description

arch/arm/plat-mxs/include/mach/arc_otg.h USB register define

include/linux/fsl_devices.h FSL USB specific structures and enums

Table 13-3 shows the platform-related source files in the directory:<
ltib_dir>/rpm/BUILD/linux/arch/arm/mach-mx28/

Table 13-3. USB Platform Header Files

File Description

usb_dr.c Platform-related initialization

usb_h1.c Platform-related initialization

Table 13-4 shows the common platform source files in the directory:
< ltib_dir>/rpm/BUILD/linux/arch/arm/plat-mxs

Table 13-4. USB Common Platform Files

File Description

utmixc.c Internal UTMI transceiver driver

usb_common.c Common platform related part of USB driver

usb_wakeup.c Handle usb wakeup events

13.6 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to these
options, use the ./ltib -c command when located in the <ltib dir>. On the screen displayed, select
Configure the Kernel and exit. When the next screen appears, select the following options to
enable this module:

•CONFIG_USB—Build support for USB
•CONFIG_USB_EHCI_HCD—Build support for USB host driver. In menuconfig, this option is

available under
Device drivers > USB support > EHCI HCD (USB 2.0) support.
By default, this option is M.
CONFIG_USB_EHCI_ARC—Build support for selecting the ARC EHCI host. In
menuconfig, this option is available underDevice drivers > USB support > Support for
Freescale controller.
By default, this option is Y.

•CONFIG_USB_EHCI_ARC_H1—Build support for selecting the USB Host1. In menuconfig,
this option is available underDevice drivers > USB support > Support for Host1 port on
Freescale controller. By default, this option is Y.

•CONFIG_USB_EHCI_ARC_OTG—Build support for selecting the ARC EHCI OTG host. In
menuconfig, this option is available under

Pag. 62 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Device drivers > USB support > Support for Host-side USB > EHCI HCD (USB 2.0)
support > Support for Freescale controller.
By default, this option is N.

•CONFIG_USB_STATIC_IRAM—Build support for selecting the IRAM usage for host. In
menuconfig, this option is available under
Device drivers > USB support > Use IRAM for USB.
By default, this option is N.

•CONFIG_USB_EHCI_ROOT_HUB_TT—Build support for OHCI or UHCI companion. In
menuconfig, this option is available under
Device drivers > USB support > Root Hub Transaction Translators.
By default, this option is Y selected by USB_EHCI_FSL && USB_SUPPORT.

•CONFIG_USB_STORAGE—Build support for USB mass storage devices. In menuconfig, this
option is available under
Device drivers > USB support > USB Mass Storage support.
By default, this option is Y.

•CONFIG_USB_HID—Build support for all USB HID devices. In menuconfig, this option is
available under
Device drivers > HID Devices > USB Human Interface Device (full HID) support.
By default, this option is Y.

•CONFIG_USB_GADGET—Build support for USB gadget. In menuconfig, this option is
available under
Device drivers > USB support > USB Gadget Support.
By default, this option is M.

•CONFIG_USB_GADGET_ARC—Build support for ARC USB gadget. In menuconfig, this
option is available under
Device drivers > USB support > USB Gadget Support > USB Peripheral Controller
(Freescale USB Device Controller).
By default, this option is Y.

•CONFIG_USB_OTG—OTG Support, support dual role with ID pin detection.
By default, this option is N.

•CONFIG_UTMI_MXC_OTG—USB OTG pin detect support for UTMI PHY, enable UTMI
PHY for OTG support.
By default, this option is N.

•CONFIG_USB_ETH—Build support for Ethernet gadget. In menuconfig, this option is
available under
Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC
Ethernet Support).
By default, this option is M.

•CONFIG_USB_ETH_RNDIS—Build support for Ethernet RNDIS protocol. In menuconfig,
this option is available under
Device drivers > USB support > USB Gadget Support > Ethernet Gadget (with CDC
Ethernet Support) > RNDIS support.
By default, this option is Y.

•CONFIG_USB_FILE_STORAGE—Build support for Mass Storage gadget. In menuconfig,
this option is available under
Device drivers > USB support > USB Gadget Support > File-backed Storage Gadget.
By default, this option is M.

Pag. 63 of 74 MCIMX28x Linux Reference Manual Rev.1.0

•CONFIG_USB_G_SERIAL—Build support for ACM gadget. In menuconfig, this option is
available under
Device drivers > USB support > USB Gadget Support > Serial Gadget (with CDC ACM
support).
By default, this option is M.

13.7 Programming Interface

This driver implements all the functions that are required by the USB bus protocol to interface with
the i.MX USB ports. See the BSP API document, for more information.

13.8 Default USB Settings

Table 24-5 shows the default USB settings.
Table 24-5. Default USB Settings

Platform OTG HS OTG FS Host1 Host2(HS) Host2(FS)

i.MX28 EVK enalbed NA enable N/A —

By default, both usb device and host function are build-in kernel, otg port is used for device mode,
and host 1 is used for host mode.

The default configuration does not enable OTG port for both device and host mode. To enable USB-
OTG for both host and device mode, configure the kernel as follows and rebuild the kernel and
modules:

•CONFIG_USB_EHCI_ARC_OTG—Enable support for the USB OTG port in HS/FS Host
mode.built as Y

•CONFIG_USB_GADGET—USB Gadget Support: built as y
•CONFIG_USB_OTG —OTG Support: built as Y
•CONFIG_MXC_OTG—USB OTG pin detect support for UTMI PHY: built as Y
•build USB GADGET driver as M, for example:

CONFIG_USB_ETH CONFIG_USB_FILE_STORAGEthen , if you want to use EVK as
mass storage device, insmod g_file_storage.ko file=/dev/mmcblk0p2
if you want to use the otg as ethernet, insmod g_ether.ko , then you can use ifconfig usb0 to
configure the ip

13.9 System WakeUp

• Both host and device connect/disconnect event can be system wakeup source

Pag. 64 of 74 MCIMX28x Linux Reference Manual Rev.1.0

13.10 USB Wakeup usage

13.10.1 How to enable usb wakeup system ability

For otg port:
echo enabled > /sys/devices/platform/fsl-

usb2-otg/power/wakeup For device-only port:

echo enabled > /sys/devices/platform/fsl-

usb2-udc/power/wakeup For host-only port:

echo enabled > /sys/devices/platform/fsl-
ehci.x/power/wakeup (x is the port num)

For usb child device echo enabled >

/sys/bus/usb/devices/1-

1/power/wakeup

13.10.2 What kinds of wakeup event usb support

Take USBOTG port as the example.

Device mode wakeup:

-connect wakeup: when usb line connects to usb port, the other port is connected to PC (Wakeup

signal: vbus change) echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

Host mode wakeup:

-connect wakeup: when usb device connects to host port (Wakeup signal: ID/(dm/dp) change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

-disconnect wakeup: when usb device disconnects to host port (Wakeup signal: ID/(dm/dp) change)

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup

-remote wakeup: press usb device (such as press usb key at usb keyboard) when usb device
connects to host port (Wakeup signal: ID/(dm/dp) change):

echo enabled > /sys/devices/platform/fsl-usb2-
otg/power/wakeup echo enabled > /sys/bus/usb/devices/1-
1/power/wakeup

NOTE: For the hub on board, it needs to enable hub's wakeup first. for remote wakeup, it needs to
do below three steps:

echo enabled > /sys/devices/platform/fsl-usb2-otg/power/wakeup (enable the roothub's
Pag. 65 of 74 MCIMX28x Linux Reference Manual Rev.1.0

wakeup) echo enabled > /sys/bus/usb/devices/1-1/power/wakeup (enable the second level
hub's wakeup)
(1-1 is the hub name)

echo enabled > /sys/bus/usb/devices/1-1.1/power/wakeup (enable the usb device's wakeup,
that device connects at second level hub)
(1-1.1 is the usb device name)

13.10.3 How to close the usb child device power

echo auto > /sys/bus/usb/devices/1-1/power/control echo auto > /sys/bus/usb/devices/1-
1.1/power/control (If there is a hub at usb device)

Chapter 14 Real Time Clock (RTC) Driver
The i.MX processor includes an integrated Real Time Clock (RTC) module. The RTC is used to
keep the time and date while the system is turned off. The driver can also:

•Provide periodic interrupts at certain frequencies (PIE)
•Wake up the system by providing an alarm feature (AIE)

14.1 Hardware Operation

The RTC prescaler converts the incoming crystal reference clock to a 1 Hz signal, which is used to
increment seconds, minutes, hours, and days Time-Of-Day (TOD) counters. The alarm functions,
when enabled, generate RTC interrupts when the TOD settings reach programmed values. The
sampling timer generates fixed-frequency interrupts, and the minutes stopwatch allows efficient
interrupts on minute boundaries.

14.2 Software Operation

The RTC module software implementation is through the RTC driver. Besides the initialization
function, it provides IOCTL functions to set up the RTC timer, interrupt, and so on. The periodic
interrupt is supported at fixed frequencies of 2, 4, 8, 16, 32, 64, 128, 256, and 512 Hz given the
clock input of
32.768 KHz (other clock input frequencies are not supported by the driver). The 1 Hz periodic
interrupt is also called the update interrupt (UIE). See the Linux documentation in
<ltib_dir>/rpm/BUILD/linux/Documentation/rtc.txt for information on the RTC API.

NOTE

The i.MX RTC driver implementation follows what is stated in the
rtc.txt file that programming and/or enabling interrupt frequencies
greater than 64 Hz is only allowed by root.

Pag. 66 of 74 MCIMX28x Linux Reference Manual Rev.1.0

14.3 Source Code Structure

The RTC module is implemented in the <ltib_dir>/rpm/BUILD/linux/drivers/rtc directory. Table 14-1 shows
the RTC module files. The source file for the RTC specifies the RTC function implementations.

Table 14-1. RTC Driver File List

File

rtc-mxs.c RTC driver

i.MX28 EVK Linux Reference Manual

14.4 Programming Interface

All the Linux RTC functions are based on rtclib. The include/linux/rtc.h file specifies all the
IOCTLs for the RTC. Table 14-1 shows the IOCTLs that are listed in include/linux/rtc.h and which
are supported by the RTC driver.

API documentation for the programming interface is in the doxygen folder of the documents
package.

The following Linux kernel configuration options are provided for this module:
• CONFIG_RTC_DRV_MXS [=M|Y]

This is the configuration option for the RTC driver, which is dependent on the RTC_CLASS
option. In menuconfig, this option is available under: Real Time Clock > Freescale MXS
series
SoC RTC

Pag. 67 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 15 Watchdog (WDOG) Driver
The Watchdog Timer module protects against system failures by providing an escape from
unexpected hang, infinite loop situations or programming errors.

15.1 Hardware Operation

Once the watchdog timer is activated, it must be serviced by software on a periodic basis. If
servicing does not take place in time, the watchdog times out. Upon a time-out, the watchdog resets
the chip

15.2 Software Operation

The Watchdog module software implementation conforms with the Linux watchdog driver model.
Besides the initialization function, it provides IOCTL and write functions to set up and maintain the
watchdog timer. Refer to Documentation/watchdog/watchdog-api.txt for full information on the
Linux Watchdog API.

Pag. 68 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 16 External Devices

16. 1 Audio Codec

16.2 Ethernet

16.3 WiFi Bluetooth module

16.4 ADC

16.4.1 Software Operation

The available registers (sys interface) are the following:

adc0, adc1, adc2, adc3

root@freescale ~$ cat /sys/class/input/input0/device/adc0,1,2,3

16. 5 PM wake-up

16.5.1 Software Operation

Interrupts that are involved in the wake-up at the moment:

- INT1 accelerometer
- IN1_H
- IGN_H

The micro can go into standby also via the RTC and be awakened after a set time.

To bring the micro in standby, these are the steps:

- for the INTs:

root@freescale ~$ echo standby > /sys/power/state

- for RTC:

root@freescale ~$ rtcwake -d /dev/rtc0 -s <time sec> standby

Pag. 69 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Chapter 17 Board Programming
17.1 SD

The archive containing the binaries is Install-imx28-SD.tgz.

These are the instructions:

- Program kernel

 copy the kernel imx28_ivt_linux_xxx.sb in rootfs/boot/imx28_ivt_linux.sb

 sudo ./mk_mx28_sd -b -x /dev/sdx

- Program filesystem

 sudo ./mk_mx28_sd -r -x /dev/sdx

- Program kernel + filesystem

 sudo ./mk_mx28_sd -x /dev/sdx

17.2 NAND

The archive the archive containing the binaries is Install-imx28-NAND.tgz.

- imx28_ivt_uboot.sb
- install_kernel.sh
- install_rootfs.sh
- install_u-boot.sh
- rootf.tgz
- uImage

The programming procedure must be performed by linux from SD.

- To program u-boot is necessary to run the script:

Pag. 70 of 74 MCIMX28x Linux Reference Manual Rev.1.0

http://imx28_ivt_uboot.sb/
http://imx28_ivt_linux.sb/
http://imx28_ivt_linux_xxx.sb/

 $ cd Install-imx28-NAND
 $./install_u-boot.sh

- To program the kernel is necessary to run the script:

 $./install_kernel.sh

-To program filesystem is necessary to run the script

 $./install_rootfs.sh

At the end you can turn off and restart the card from the NAND:

U-Boot 2009.08-dirty (feb 26 2014 - 08:20:25)

Freescale i.MX28 family
CPU: 454 MHz
BUS: 151 MHz
EMI: 205 MHz
GPMI: 24 MHz
DRAM: 128 MB
NAND: 256 MiB
In: serial
Out: serial
Err: serial
Net: got MAC address from IIM: 00:04:00:00:00:00
FEC0
Hit any key to stop autoboot: 0

NAND read: device 0 offset 0x240000, size 0x300000
 3145728 bytes read: OK
Booting kernel from Legacy Image at 42000000 ...
 Image Name: Linux-2.6.35.3-670-g914558e
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 2619884 Bytes = 2.5 MB
 Load Address: 40008000
 Entry Point: 40008000
 Verifying Checksum ... OK
 Loading Kernel Image ... OK
OK

Starting kernel ...

Uncompressing Linux... done, booting the kernel.
Linux version 2.6.35.3-670-g914558e (nicola@nicola) (gcc version 4.4.4

Pag. 71 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Pag. 72 of 74 MCIMX28x Linux Reference Manual Rev.1.0

Rohs compliance
The MCAM335x Standalone Embedded CPU Board comply with the European Union’s Directive
2002/95/EC: "Restrictions of Hazardous Substances".

Warranty Terms

MAS Elettronica guarantees hardware products against defects in workmanship and material for a
period of one (1) year from the date of shipment. Your sole remedy and MAS Elettronica’s sole lia-
bility shall be for MAS Elettronica, at its sole discretion, to either repair or replace the defective
hardware product at no charge or to refund the purchase price. Shipment costs in both directions are
the responsibility of the customer. This warranty is void if the hardware product has been altered or
damaged by accident, misuse or abuse.

Disclaimer of Warranty
THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EX-
PRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE,
NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDIC-
TION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET
FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PUR-
CHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.
Limitation on Liability
UNDER NO CIRCUMSTANCES SHALL MAS ELETTRONICA BE LIABLE FOR ANY LOSS,
DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE
PRODUCT. IN NO EVENT SHALL MAS ELETTRONICA BE LIABLE FOR ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR
INDIRECTLY FROM USE OF ANY PRODUCT.

Contact Informations

Headquarters

Mas Elettronica Sas
Via Rossi 1
35030 Rubano (PD)
Italy.
Tel +39 0498687469
Fax +39 0498687469

Sales : amm@maselettronica.com
Support: info@maselettronica.com

mailto:info@maselettronica.com
mailto:amm@maselettronica.com

	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations
	Suggested Reading
	Chapter 1 Introduction
	1.1 Software Base
	1.2 Features

	Chapter 2 Architecture
	2.1 Linux BSP Block Diagram
	2.2 Kernel
	2.2.1 Kernel Configuration
	2.2.2 Machine Specific Layer (MSL)
	2.2.2.1 Memory Map
	2.2.2.6 Pin Multiplexing

	2.3 Drivers
	2.3.1 Universal Asynchronous Receiver/Transmitter (UART) Driver
	2.3.2 Real-Time Clock (RTC) Driver
	2.3.3 Watchdog Timer (WDOG) Driver
	2.3.4 DCP
	2.3.5 i.MX28 Graphics
	2.3.5.4 Pixel Pipeline (PXP) Driver
	2.3.6 Sound Driver
	2.3.7 Keypad
	2.3.8 Memory Technology Device (MTD) Driver
	2.3.8.1 GPMI/NAND
	2.3.9 USB Driver
	2.3.10 General Drivers
	2.3.10.7 Backlight Driver
	2.3.10.8 LED Driver
	2.3.10.9 Power Source Manager and Battery Charger

	2.4 Boot Loaders
	2.4.1 i.MX28 Boot Loader
	2.4.1.3 U-boot

	Chapter 3 Machine Specific Layer (MSL)
	3.1 Interrupts
	3.1.1 Interrupt Hardware Operation
	3.1.2 Interrupt Software Operation
	3.1.3 Interrupt Source Code Structure
	3.1.4 Interrupt Programming Interface

	3.2 Timer
	3.2.1 Timer Hardware Operation
	3.2.2 Timer Software Operation
	3.2.3 Timer Features
	3.2.4 Timer Source Code Structure
	3.2.5 Timer Programming Interface

	3.3 Memory Map
	3.3.1 Memory Map Hardware Operation
	3.3.2 Memory Map Software Operation
	3.3.3 Memory Map Features
	3.3.4 Memory Map Source Code Structure
	3.3.5 Memory Map Programming Interface

	3.4 Pin Multiplexing
	3.4.1 Pin Multiplexing Hardware Operation
	3.4.2 Pin Multiplexing Software Operation
	3.4.3 Pin Multiplexing Source Code Structure
	3.4.4 Pin Multiplexing Programming Interface
	3.4.5 GPIO With Pin Multiplexing

	Chapter 4 Direct Memory Access Controller (DMAC) API
	4.1 Hardware Operation
	4.2 Software Operation
	4.3 Source Code Structure
	4.4 Programming Interface

	Chapter 5 Persistent Bits Driver
	5.1 Hardware Operation
	5.2 Software Operation
	5.3 Source Code Structure
	5.4 Menu Configuration Options
	5.5 Programming Interface

	Chapter 6 Unique ID on Boot Media
	6.1 Software Operation
	6.2 Programming Interface
	6.3 Source Code Structure
	6.4 Menu Configuration Options

	Chapter 7 CPU Frequency Scaling (CPUFREQ) Driver
	7.1 Software Operation
	7.2 Source Code Structure
	7.3 Menu Configuration Options
	7.3.1 Board Configuration Options

	Chapter 8 i.MX28 Static Power Management Driver
	8.1 Hardware Operation
	8.2 Software Operation
	8.3 Source Code Structure
	8.4 Menu Configuration Options

	Chapter 9 NAND GPMI Flash Driver
	9.1 Hardware Operation
	9.2 Software Operation
	9.2.1 Basic Operations: Read/Write
	9.2.2 Error Correction
	9.2.3 Boot Control Block Management
	9.2.4 Bad Block Handling
	9.2.5 Special NAND supporting

	9.3 Source Code Structure
	9.4 Menu Configuration Options

	Chapter 10 I2C Driver
	10.1 I2C Bus Driver Overview
	10.2 I2C Device Driver Overview
	10.3 Hardware Operation
	10.4 Software Operation
	10.4.1 I2C Bus Driver Software Operation
	10.4.2 I2C Device Driver Software Operation

	10.5 Driver Features
	10.7 Menu Configuration Options
	10.8 Programming Interface
	10.9 Interrupt Requirements

	Chapter 11 MMC/SD/SDIO Host Driver
	11.1 Hardware Operation
	11.2 Software Operation
	11.3 Driver Features
	11.4 Source Code Structure
	11.5 Menu Configuration Options
	11.6 Programming Interface

	Chapter 12 Universal Asynchronous Receiver-Transmitter (UART) Driver
	12.1 Application UART
	12.1.1 Hardware Operation
	12.1.2 Software Operation
	12.1.3 Source Code Structure

	12.2 Debug UART
	12.2.1 Hardware Operation
	12.2.2 Software Operation
	12.2.3 Source Code Structure

	12.3 Menu Configuration Options

	Chapter 13 USB Driver
	13.1 Architectural Overview
	13.2 Hardware Operation
	13.3 Software Operation
	13.4 Driver Features
	13.5 Source Code Structure
	13.6 Menu Configuration Options
	13.7 Programming Interface
	13.8 Default USB Settings
	13.9 System WakeUp
	13.10 USB Wakeup usage
	13.10.1 How to enable usb wakeup system ability
	13.10.2 What kinds of wakeup event usb support
	13.10.3 How to close the usb child device power

	Chapter 14 Real Time Clock (RTC) Driver
	14.1 Hardware Operation
	14.2 Software Operation
	14.3 Source Code Structure
	14.4 Programming Interface

	Chapter 15 Watchdog (WDOG) Driver
	15.1 Hardware Operation
	15.2 Software Operation

	Chapter 16 External Devices
	16. 1 Audio Codec
	16.2 Ethernet
	16.3 WiFi Bluetooth module
	16.4 ADC
	16.4.1 Software Operation

	16. 5 PM wake-up
	16.5.1 Software Operation

	Chapter 17 Board Programming
	17.1 SD

