

MCAM335x Linux User's Guide
MCAM335X Standalone Embedded CPU Board linux users guide

0

Contents

MCAM335x Linux User's Guide Pag. 3 of 17

About this Manual

Installation
Introduction

Mas elettronica supports its MCAM335x with linux kernel 3.2.0 and Arago file-systems
for reference.

This document describes how to install Mas Elettronica's Linux Support Package (LSP)
for the MCAM335X.

This LSP provides a fundamental software platform for development, deployment and
execution on MCAM335X. It abstracts the functionality provided by the hardware.

In this context, the document contains instructions to:

� Install the release on a development machine.
� Build the sources included in this release.
� Installing the binaries on the MCAM335X.
� Booting the MCAM335x

The Linux kernel provides support for all on-board peripherals.

The linux folder on the FTP consists of:

1. ready-to-run pre-built binaries: Arago file system, Linux kernel, U-boot, Xloader.
2. Sources files.

Prerequisites

Before starting the installation of the package, make sure below system requirements are
met:

� Host machine running a version of Windows OS such as Windows XP / 7 or a
Linux such as Ubuntu.

� MCAM335X Evaluation Kit + sources and binaries. Please refer to info@Mas
Elettronica.com for obtaining FTP credentials.

Pag. 4 of 17MCAM335x Linux User's Guide

The Linux host is used for the following:
� Recompiling U-Boot / kernel.
� Hosting the NFS server to boot the EVM with NFS as root filesystem.

Either of Windows or Linux host can be used for:
� Hosting the TFTP server required for downloading the kernel and file-system
images from U-Boot using Ethernet.
� Running a serial console terminal application

Install LSP packages

Mas Elettronica LSP consists of :
� Linux kernel source code
� U-Boot source code
� Linux root file-system binaries examples.

Extract the contents of the LSP release packages on a Linux host machine with the
following commands:

$ mkdir SDK-MAS.R1
$ tar -xjf linux-3.2.0-sdk.mas_r1.tar.bz2 -C SDK-MAS.R1
$ tar -xjf u-boot-sdk.mas_r1.tar.bz2 -C SDK-MAS.R1
$ tar -xjf binary-sdk.mas_r1.tar.bz2 -C SDK-MAS.R1

This creates a directory MCAM335X -LSP with the following contents:

\--- SDK-MAS.R1
+----linux-3.2.0-sdk.mas_r1/
| +----<<i>linux source code ...</i>>
+----u-boot-sdk.mas_r1/
| +----<<i>uboot source code ...</i>>
+----binary-sdk.mas_r1/
| |----base-rootfs-mcam335x.tar.bz2
| |----rootfs-mcam335x.tar.bz2
| |----boot/
| | |----MLO-mcam335x
| | |----u-boot-mcam335x.img
| | |----uImage-mcam335x
|----ubi/
| | |----base-rootfs-mcam335x.ubi.img
| | |----rootfs-mcam335x.ubi.img

Pag. of Pag. 5 of 17MCAM335x Linux User's Guide

U-Boot Source Code

� U-Boot sources directory is at u-boot-sdk.mas_r1

Linux Kernel Source Code

� Linux kernel source s directory is at linux-3.2.0 -sdk.mas_r1

Linux Root File-System

To boot-up Linux, a target file-system is needed. Two Arago based file-systems are
included in the LSP binaries package.
Base filesystem (~11MB) - It has some basic utilities installed but is intended to be
rather small and light weight.
Demo filesystem (~170MB) - This file system is created by taking the base file system
and adding all the additional SDK components such as 3D graphics, matrix, profiling
tools, etc...
Further explanation about customizing these file-systems can be found here:
http://processors.wiki.ti.com/index.php/AMSDK_File_System_Optimization/Customiza
tion

Toolchain

GNU toolchain for ARM processors from Arago is recommended. Arago Toolchain can
be found in the linux-devkit directory of the SDK here: http://softwaredl.
ti.com/dsps/dsps_public_sw/am_bu/sdk/AM335xSDK/latest/index_FDS.html

Environment Setup

After installing the toolchain, the environment in the Linux host needs to be setup.

Pag. 6 of 17MCAM335x Linux User's Guide

Set the environment variable PATH to contain the binaries of the Arago cross-compiler
tool-chain.

For example, in bash:

$ export PATH=/opt/toolchain/arm-arago-gcc-4.5.3/bin/:$PATH

Add the location of U-Boot tools directory to the PATH environment variable (required
for mkimage utility that is built as part of U-Boot build process and is needed to generate
uImage when building the kernel)

For example, in bash:

$ export PATH=/opt/u-boot/tools:$PATH

NOTE: Actual commands to be used for setting the environment variables will depend
upon the shell and location of the tools.

NOTE: To help get started quickly, the LSP package comes with pre-built binaries.
However, after making any changes to U-Boot and/or Linux Kernel, they have to be
cross-compiled and the new binaries that are generated should be used.

U-Boot
In AM335x the ROM code serves as the 1st stage bootloader. The 2nd and the 3rd stage
bootloaders are based on U-Boot.

The binary for the 2nd stage is referred to as SPL and the binary for the 3rd stage as
simply U-Boot. SPL is a non-interactive loader and is a specially built version of UBoot.
It is built concurrently when building U-Boot.

The ROM code can load the SPL image from the NAND or SDMMC devices.

Building U-Boot
Change to the base of the U-Boot directory.

$ cd SDK-05.06.00.0.VAR.R8/u-boot-sdk.mas_r1

Pag. 7 of 17MCAM335x Linux User's Guide

NOTE: Building into a separate object directory with the "O=" parameter to make is
strongly recommended.

Build

$ [-d ./mcam335x] && rm -rf ./mcam335x
$ make O=mcam335x CROSS_COMPILE=arm-arago-linux-gnueabi- ARCH=arm mcam335x_config
$ make O=mcam335x CROSS_COMPILE=arm-arago-linux-gnueabi- ARCH=arm

This will generate two binaries in the mcam335x directory, MLO and u-boot.img along
with other intermediate binaries that may be needed in some cases.
For information on installing the kernel into NAND on the SOM please see the Installing
the Linux Kernel section.

U-Boot Environment Settings

The MCAM335X U-Boot has default environment settings that allows boot from
NAND, SD/MMC card and Ethernet.
By default the boot device is NAND, for more information about boot options go
to Boot section.

Linux Kernel

Cleaning the Kernel Sources
Prior to compiling the Linux kernel make sure that the kernel sources are clean.
Enter linux kernel directory:

$ cd SDK-05.06.00.0.VAR.R8/linux-3.2.0-sdk.mas_r1

Pag. 8 of 17MCAM335x Linux User's Guide

NOTE: The next step will delete any saved .config file in the kernel tree as well as the
generated object files. If you have done a previous configuration and do not wish to lose
your configuration file you should save a copy of the configuration file before
proceeding.

The command to clean the kernel is:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- mrproper

Configuring the Kernel
Before compiling the Linux kernel it needs to be configured to select which components
will become part of the kernel image:

Using Default Configurations

To build the default configuration for the MCAM335X:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- mcam335x_defconfig

Customizing the Configuration

For configuring the kernel run:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- menuconfig

Once the configuration window is open you can select which kernel components will be
included in the build. Exiting the configuration will save your selections to a file in the
root of the kernel tree called .config.

Compiling the Kernel
Once the kernel has been configured compile kernel:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- uImage

Pag. 9 of 17MCAM335x Linux User's Guide

This will result in a kernel image file being created in the arch/arm/boot/ directory called
uImage. This file can be used by u-boot to boot your device.
If you selected any components of the kernel to be build as dynamic modules you must
issue an additional command to compile those modules. The command is:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- modules

This will result in .ko (kernel object) files being placed in the kernel tree. These .ko files
are the dynamic kernel modules. The next section will cover how to install these
modules.

Installing the Kernel

case of the kernel image this can be installed by copying the uImage file to the location
for downloading using TFTP, or put in an SD-card.
For example: when using TFTP boot, /tftpboot directory is the common location,
whereas when booting from SD card, file shoudl be put in the first FAT partition.
To install the kernel modules, provide teh rootfs location, see below.
This command will create a directory tree in that location: lib/modules/<kernel version>
which will contain the dynamic modules corresponding to this version of the kernel. The
base location should usually be the root of your target file system. The general format of
the command is:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- INSTALL_MOD_PATH=<path to root of file
system> modules_install

For example if you are installing the modules to an NFS share located at
/home/user/targetNFS you would do:

$ make ARCH=arm CROSS_COMPILE=arm-arago-linux-gnueabi- INSTALL_MOD_PATH=/home/user/targetNFS
modules_install

Pag.10 of 17MCAM335x Linux User's Guide

Out-of-tree Kernel Modules
NOTE: Some drivers like the SGX and WLAN drivers are delivered as modules outside
of the kernel tree. These drivers binaries are already included in the pre-build root filesystems
provided by Mas Elettronica.

Boot
The Kernel and root the file-system can be booted either from NAND, SD-Card or can
be retrieved via ethernet to RAM using TFTP.
Nand Flash root file-system is UBIFS based which is the most recommended filesystem
for nand flashes.
Following sections describe various kernel boot options possible.

Boot from MMC/SD

For creating a bootable SD , follow the below instruction on creating an SD described in
the paragraph Nand Recovery

To boot the Linux, type:

U-Boot# run mmc_boot

Boot from NAND
By default the MCAM335X boots from NAND.
The SPL, U-Boot, kernel uImage and UBIFS filesystem are flashed on the NAND flash
at production.

Flash Images to NAND
Replacing Nand Flash images can be done from either Linux user space or U-Boot.
From U-Boot

Pag.11 of 17MCAM335x Linux User's Guide

Get the images to U-Boot via TFTP or MMC/SD.
U-Boot # nandecc hw 2
U-Boot # nand erase 0x0 0x280000
<< load the MLO image to ${loadaddr} >>
U-Boot # nand write ${loadaddr} 0x0 0x20000
U-Boot # nand write ${loadaddr} 0x20000 0x20000
U-Boot # nand write ${loadaddr} 0x40000 0x20000
<< load the u-boot.img to ${loadaddr} >>
U-Boot # nand write ${loadaddr} 0x80000 0x1c0000
<< load the uImage to ${loadaddr} >>
U-Boot # nand erase 0x280000 0x500000
U-Boot # nand write ${loadaddr} 0x280000 0x480000

From Linux
Put the images on the file-system.
<< Install SPL >>
$ flash_erase /dev/mtd0 0 0
$ flash_erase /dev/mtd1 0 0
$ flash_erase /dev/mtd2 0 0
$ flash_erase /dev/mtd3 0 0
$ nandwrite -p /dev/mtd0 <MLO file>
$ nandwrite -p /dev/mtd1 <MLO file>
$ nandwrite -p /dev/mtd2 <MLO file>
$ nandwrite -p /dev/mtd3 <MLO file>
<< Install U-Boot >>
$ flash_erase /dev/mtd4 0 0
$ flash_erase /dev/mtd5 0 0
$ nandwrite -p /dev/mtd4 <u-boot.img file>
<< Install Kernel >>
$ flash_erase /dev/mtd6 0 0
$ nandwrite -p /dev/mtd6 <uImage file>

Boot over Network (Ethernet)

NOTE:When setting a MAC address please ensure that the LS-bit of the 1st byte is not 1
i.e. when setting the MAC address: y in xy:ab:cd:ef:gh:jk has to be an even number.

For more info this refer to the wiki
page http://en.wikipedia.org/wiki/MAC_address.

When kernel image and root file-system are fetched from a TFTP/NFS server:

� Ensure that the SOM is connected to network with DHCP and TFTP server set up
� If the TFTP server supports negotiation between client and server, Disable it
� Copy 'uImage' kernel image to TFTP server's root directory.

Pag.12 of 17MCAM335x Linux User's Guide

� Set 'ethaddr' U-Boot environment variable with proper ethernet address in format
'xx:xx:xx:xx:xx:xx' (replace 'xx' with proper hexadecimal values)
� Setup NFS server and export one of the provided pre-build root file-system
� Execute following commands at U-Boot prompt. Assuming kernel image name as
'uImage':

U-Boot# setenv serverip <Server IP address>
U-Boot# setenv rootpath <Path of the exported root file-system on the NFS server>
U-Boot# run net_boot

UBIFS
UBIFS is used for Linux root file-system on the MCAM335X NAND Flash.
NOTE: Pre-built UBI root file-system binaries are provided by Mas Elettronica as part
of the LSP binaries package.

Compilling UBIFS Tools

The MTD and UBI user-space tools are available from the the following git repository:

$ git clone git://git.infradead.org/mtd-utils.git
$ cd mtd-utils/
$ git checkout v1.5.0
$ make

IMPORTANT
Tested wuth mtd-utils version is 1.5.0.

For instructions on compiling MTD-utils, refer MTD-Utils Compilation:
http://processors.wiki.ti.com/index.php/MTD_Utilities#MTD-Utils_Compilation

Creating UBIFS
This section describes steps for creating a UBI rootfs image to be flashed to the
MCAM335X NAND Flash.

� mkfs.ubifs

Pag.13 of 17MCAM335x Linux User's Guide

$ mkfs.ubifs/mkfs.ubifs -r rootFS/ -F -o system_ubifs.img -m 2048 -e 126976 -c 1960

Where:

-m 2KiB (or 2048)

The minimum I/O size of the underlying UBI and MTD devices. In our case, we are
running the flash with no sub-page writes, so this is a 2KiB page.

-e 124KiB (or 126976)

Erase Block Size: UBI requires 2 minimum I/O units out of each Physical Erase Block
(PEB) for overhead: 1 for maintaining erase count information, and 1 for maintaining the
Volume ID information. The PEB size for our flash is 128KiB, so this leads to each
Logical Erase Block (LEB) having 124KiB available for data.

-c 1960

The maximum size, in LEBs, of our file system.

-r rootFS

Use the contents of the 'rootFS/' directory to generate the initial file system image.

-F

File-system free space has to be fixed up on first mount (http://www.linuxmtd.
infradead.org/faq/ubifs.html#L_free_space_fixup)

-o system_ubifs.img

Output file.

NOTE: On AM335x, -F option is required when creating ubifs image. If this option is
not used, Kernel may crash while loading the Filesystem from UBI partition.

The output of the above command, 'system_ubifs.img' is fed into the 'ubinize' program to wrap
it into a UBI image.
The images produced by mkfs.ubifs are later used by the ubinize tool to create a UBI image is
flashed to the raw flash to be used a UBI partition.

Pag.14 of 17MCAM335x Linux User's Guide

- Create ubinize.cfg file and write the bellow contents into it:

[rootfs]
mode=ubi
image=system_ubifs.img
vol_id=0
vol_size=220MiB
vol_type=dynamic
vol_name=rootfs
vol_flags=autoresize

- ubinize

$ ubi-utils/ubinize -o rootfs-mcam335x.ubi.img -m 2048 -p 128KiB -s 2048 -O 2048 ubinize.cfg

Where:

-o rootfs-mcam335x.ubi.img

Output file.

-m 2KiB (or 2048)

Minimum flash I/O size of 2KiB page.

-p 128KiB

Size of the physical eraseblock of the flash this UBI image is created for
-O 2048

offset if the VID header from start of the physical eraseblock

The output of the above command, 'rootfs-mcam335x.ubi.img' is the required image.

Using UBIFS

We can Flash UBIFS image from either Linux Kernel or U-Boot.

From U-boot

Get the UBIFS image to U-Boot from tftp or MMC/SD.

Pag.15 of 17MCAM335x Linux User's Guide

Since we copy the data to NAND, Empty/Erase the required RAM. Then, g et the
UBIFS image to U-Boot

u-boot# mw.b ${loadaddr} 0xFF <filesystem_image_size> <=== filesystem image size is upward aligned
to NAND block size(128k).
u-boot# mmc rescan
u-boot# fatload mmc 0 ${loadaddr} base-rootfs-mcam335x.ubi.img
u-boot# nandecc hw 2
u-boot# nand erase 0x00780000 0xF880000
u-boot# nand write.i ${loadaddr} 0x780000 0xFC0000

From Linux
$ flash_erase /dev/mtd7 0 0
$ ubiformat /dev/mtd7 -f base-rootfs-mcam335x.ubi.img -s 2048 -O 2048

NAND Recovery
As an easy and fast way to recover the MCAM335X NAND flash, Mas Elettronica
provides a recovery SD card image that can be used to install the pre-built Linux and
Android systems.
This SD card image includes a script (nand-recovery.sh) that installs all the boot images
and root file-system.

Preparing rescue SD-Card
- Plug your SD card to your Linux machine, run dmesg and see what device is
added (i.e. /dev/sdX)
- gunzip am33-som-nand-recovery-sd.v10.img.gz
- dd if=am33-som-nand-recovery-sd.v10.img of=/dev/sdX bs=128k

Recover Nand Flash

- Insert the SD card into the SD/MMC slot of the custom board
- Press and hold the boot select switch while powering ON the board
- Login as root (no password)
- From Linux command line, type: "nand-recovery.sh". (This will install Linux on
 he NAND)
- Unplug the SD card and reboot

Pag.16 of 17MCAM335x Linux User's Guide

Contact Informations

Headquarters

Tel +39 0498687469

Support: info@maselettronica.com

Mas Elettronica Sas
Via A. Rossi 1
35030 Rubano (PD) Italy

NAND recovery script usage:

usage: /sbin/nand-recovery.sh options
This script install Linux/Android binaries in mcam335x NAND.
OPTIONS:
-h Show this message
-o <Linux|Android> OS type (defualt: Linux).

Reference Documentation

- How to Flash Linux System from U-boot:
- http://processors.wiki.ti.com/index.php/How_to_Flash_Linux_System_fro
m_U-boot
- AMSDK U-Boot User's Guide:
- http://processors.wiki.ti.com/index.php/AMSDK_u-boot_User%27s_Guide
- AM335X Flash Programming Guide
- http://processors.wiki.ti.com/index.php/Am335x_Flash_Programming_Gui
de
- AMSDK Linux User's Guide:
- http://processors.wiki.ti.com/index.php/AMSDK_Linux_User%27s_Guide
- AM335X PSP User's Guide:
- http://processors.wiki.ti.com/index.php/AM335x_PSP_User's_Guide
- UBIFS Support:
- http://processors.wiki.ti.com/index.php/UBIFS_Support

Pag.17 of 17

